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1. Definitions

Let X and Y be normed vector spaces, and let D0 be a subspace of X . We say that
a linear operator A:D0→ Y is closed if whenever xn ∈ D0 with xn→ x and Axn→ y,
it follows that x ∈ D0 and Ax = y.

Suppose there is a subspace D⊃ D0 and a linear operator B:D→ Y that satisfies
Ax = Bx for x ∈ D0. In this case, we say that B is an extension of A. If the extension
B is closed, then we say that A is closable. Of course, to say that B is closed means
that whenever xn ∈ D with xn→ x and Bxn→ y, then x ∈ D and Bx = y.

2. A Lemma

Lemma 1. Suppose that whenever dn ∈ D0 converges to zero and Adn→ y, then
y = 0. Then A is closable.

Proof. Consider the set

D := {x ∈ X : ∃xn ∈ D0 with xn→ x and Axn→ y}.

First notice that D0 ⊂ D and that D is a subspace. Next, for x ∈ D, put Bx := y =
limn→∞ Axn. To show that Bx is uniquely defined, suppose x̃n ∈ D0 with x̃n→ x and
Ax̃n→ z. We must show that z = y. Observe that

dn := xn− x̃n→ x− x = 0 and Adn = A(xn− x̃n) = Axn−Ax̃n→ y− z.

By hypothesis, limn→∞ Adn = 0; hence y− z = 0.
Clearly, if x ∈ D0, we can take xn = x and Bx = Ax. Hence, B is an extension of

A. It remains to show that B is closed. Suppose xn ∈ D with xn → x and Bxn → y.
We must show that x ∈ D and Bx = y. To show x ∈ D, we start by finding a sequence
from D0 that converges to x. Since each xn ∈ D, there is a sequence wn

k → xn and
Awn

k → Bxn. Hence, for all sufficiently large k, depending on n, say k ≥ Kn, we have

‖wn
k− xn‖< 1/n and ‖Awn

k−Bxn‖< 1/n.
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In particular, we may specialize to k = Kn and write

‖wn
Kn − xn‖< 1/n and ‖Awn

Kn −Bxn‖< 1/n.

We can now write

‖wn
Kn − x‖ ≤ ‖wn

Kn − xn‖+‖xn− x‖< 1/n+‖xn− x‖

and
‖Awn

Kn − y‖ ≤ ‖Awn
Kn −Bxn‖+‖Bxn− y‖< 1/n+‖Bxn− y‖.

We now see that as n→ ∞, wn
Kn
∈ D0 converges to x and Awn

Kn
converges to y. This

says that x ∈ D and Bx = y.
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