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Abstract

Basic results about convex functions on finite and infinite-dimensional spaces are
derived. Much of the text assumes that the reader is familiar with advanced calculus
and the projection theorem for Hilbert space. However, the section on subgradients
can be read without such knowledge and without reading any of the earlier sections.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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1. The Epigraph

1.1. Motivation

Let X be a real inner-product space. If C ⊂ X , then we say C is a convex set
if for every pair of points x,y ∈ C and every 0 ≤ λ ≤ 1, the convex combination
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λx+(1−λ )y also belongs to C. By writing the convex combination as y+λ (x−y),
we see that as λ goes from zero to one, the convex combination traces out a straight
line starting at y and ending at x.

When C is a nonempty convex set, a real-valued function f0:C→ IR is said to be
a convex function if

f0
(
λx+(1−λ )y

)
≤ λ f0(x)+(1−λ ) f0(y) (1)

for all x,y ∈C and all 0≤ λ ≤ 1. The convexity of the set C is used to guarantee that
whenever x and y are valid arguments for f0, the convex combination λx+(1−λ )y
is also a valid argument of f0. The inequality (1) says when looking at the graph of
f0, the line segment joining the points (x, f0(x)) and (y, f0(y)) lies above the function
values when the function is evaluated along the line joining x and y. This is illustrated
in Figure 1 for the function f0(x) :=− lnx for x > 0.
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Figure 1. Illustration of (1).

Starting with a real-valued convex function f0 on a nonempty convex set C, let us
define

f (x) :=
{

f0(x), x ∈C,
∞, otherwise. (2)

We claim that
f
(
λx+(1−λ )y

)
≤ λ f (x)+(1−λ ) f (y) (3)

holds for all x,y ∈ X and all 0 ≤ λ ≤ 1. This is easy to see because if x,y ∈C, then
(3) reduces to (1). Otherwise, if either x or y is not in C, then (3) holds automatically
because the right-hand side is infinite if 0 < λ < 1. If λ is zero or one, then (3) is
trivially true for all x,y ∈ X .

Since every real-valued convex function on a nonempty convex subset of X can
be extended to a (−∞,∞]-valued function on X that satisfies (3), we can dispense
with the set C and discuss functions f :X → (−∞,∞] that satisfy (3). Note, however,
that this admits the new possibility f (x) = ∞ for all x∈ X that was not present before.
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Definition 1.1. A function f :X → (−∞,∞] that is not everywhere equal to ∞, is
said to be proper.

For a convex function f :X → (−∞,∞], its conjugate functiona is

f ∗(y) := sup
x∈X

[
〈x,y〉− f (x)

]
, y ∈ X .

For fixed y, consider the function of x, 〈x,y〉− f (x), that is being maximized. If f is
proper, then there is some x0 with f (x0) ∈ IR. In this case,

f ∗(y)≥ 〈x0,y〉− f (x0) = real number,

which implies that f ∗:X → (−∞,∞]. It also implies

f ∗(y) = sup
x: f (x)<∞

[
〈x,y〉− f (x)

]
, y ∈ X .

In fact, f ∗(y) is a convex function of y. Write

f ∗
(
λy1 +(1−λ )y2

)
= sup

x: f (x)<∞

[〈
x,λy1 +(1−λ )y2

〉
− f (x)

]
= sup

x: f (x)<∞

[
λ{〈x,y1〉− f (x)}+(1−λ ){〈x,y2〉− f (x)}

]
≤ λ sup

x: f (x)<∞

[
〈x,y1〉− f (x)

]
+(1−λ ) sup

x: f (x)<∞

[
〈x,y2〉− f (x)

]
= λ f ∗(y1)+(1−λ ) f ∗(y2).

Example 1.2. Consider the convex function f (x) :=− lnx for x > 0 and f (x) :=
∞ for x≤ 0. Then

f ∗(y) = sup
x>0

[
xy+ lnx].

For y = 0, it is clear that f ∗(y) = ∞. For y > 0, write xy+ lnx = x
[
y+ lnx

x

]
. Letting

x→∞ shows xy+ lnx≈ xy→∞. For y < 0, calculus tells us the optimal x =−1/y >
0, and then f ∗(y) =−1− ln(−y). Thus,

f ∗(y) =
{

∞, y≥ 0,
−1− ln(−y), y < 0.

a In large deviations, the conjugate function is often called the Fenchel–Legendre transform [3].
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Now suppose f (x) = ∞ for all x. Then f ∗(y) = −∞ for all y. This suggests that
we start looking at functions f :X → [−∞,∞]. This creates a problem if we continue
trying to use (3) to define convex functions because if f (x) = ∞ and f (y) =−∞, we
may be confronted with the expression ∞−∞, which is not defined! One way to
avoid this problem is to introduce the epigraph of f .

1.2. Definitions

If f :X → [−∞,∞], then the effective domain of f is

dom f := {x ∈ X : f (x)< ∞}.

Hence, x ∈ dom f if and only if the value of f (x) is either finite or−∞. It follows that
dom f =∅⇔ f ≡ ∞. The epigraph of f is

epi f := {(x, t) ∈ X× IR : f (x)≤ t}.

If (x, t) ∈ epi f , then f (x) ≤ t < ∞, and if x ∈ dom f , then for some finite t, (x, t) ∈
epi f . Thus,

epi f =∅⇔ dom f =∅⇔ f ≡ ∞. (4)

Definition 1.3 (Convex Function). A function f :X → [−∞,∞] is convex if epi f
is a convex subset of X× IR; i.e., if for all 0≤ λ ≤ 1 and all (x, t) and (y,s) in epi f ,

λ (x, t)+(1−λ )(y,s) =
(
λx+(1−λy),λ t +(1−λ )y

)
∈ epi f ,

or equivalently,
f
(
λx+(1−λ )y

)
≤ λ t +(1−λ )s. (5)

For (x, t) and (y,s) in epi f , we know f (x) and f (y) are < ∞. What happens if
f (x) = −∞? Then for every real t ′ no matter how negative, f (x) ≤ t ′, which means
(x, t ′) ∈ epi f . Applying (5) with t ′ instead of t and taking 0 < λ < 1, we conclude
that f

(
λx+(1−λ )y

)
= −∞. Now suppose f (x) and f (y) are finite real numbers.

Then we can specialize to t = f (x) and s = f (y) in (5) to get our original formula,

f
(
λx+(1−λ )y

)
≤ λ f (x)+(1−λ ) f (y). (6)

Hence, convexity of epi f implies (6) holds for all x,y ∈ dom f , even when f (x) or
f (y) is −∞.
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Proposition 1.4. If f :X → (−∞,∞] and (6) holds for all x,y ∈ X and 0≤ λ ≤ 1,
then epi f is convex.

Proof. Suppose (x, t) and (y,s) are in epi f . Then f (x) ≤ t and f (y) ≤ s, and
using this in (6) yields (5).

1.3. Projection onto the Epigraph and Lower Semicontinuity

If X is complete; i.e., X is a Hilbert space, then the Projection Theorem tells us
that for every nonempty, closed, convex set C ⊂ X and every x ∈ X , there is a unique
point x̂ ∈C satisfying both

‖x− x̂‖ ≤ ‖x− y‖, y ∈C,

and
〈x− x̂,y− x̂〉 ≤ 0, y ∈C. (7)

Since X is an inner-product space, we can make X × IR into an inner-product
space by setting 〈

(x, t),(y,s)
〉

:= 〈x,y〉+ ts.

The corresponding norm squared on X× IR is

‖(x, t)− (y,s)‖2 = ‖x− y‖2 + |t− s|2,

which impliesb

‖(x, t)− (y,s)‖ ≥
{
‖x− y‖
|t− s|

and ‖(x, t)− (y,s)‖ ≤ ‖x− y‖+ |t− s|.

Hence, two points (x, t) and (y,s) are close if and only if x is close to y in the norm
on X and |t− s| is also small. If X is a Hilbert space, then it is not hard to show that
X× IR is also a Hilbert space. Since we will be interested in projections onto epi f , it
is important to have conditions on f under which epi f will be nonempty, closed, and
convex. Proposition 1.4 was a first step.

If epi f is closed, then for each real t, the level set A := {x ∈ X : f (x) ≤ t} is
closed. To see this, suppose xn ∈ A and xn → x. Then ‖(xn, t)− (x, t)‖ = ‖xn− x‖,

b The right-hand inequality follows by noting that(
‖x− y‖+ |t− s|

)2
= ‖x− y‖2 +2‖x− y‖|t− s|+ |t− s|2 ≥ ‖x− y‖2 + |t− s|2 = ‖(x, t)− (y,s)‖2.
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which implies (xn, t)→ (x, t). Since epi f is closed, we conclude (x, t) ∈ epi f , which
means that f (x)≤ t; i.e., x ∈ A.

The level sets {x ∈ X : f (x) ≤ t} are all closed if and only if their complements,
{x ∈ X : f (x) > t}, are all open. A function with this latter property is said to be
lower semicontinuous. Hence, lower semicontinuity is equivalent to all the level
sets being closed.

We now show that if f is lower semicontinuous, then epi f is closed. Suppose
(xn, tn) ∈ epi f and (xn, tn)→ (x, t). We must show (x, t) ∈ epi f , or f (x) ≤ t. Since
(xn, tn)→ (x, t), xn → x and tn → t. Now suppose f (x) > t. Then for small ε > 0,
f (x)> t + ε as well. For large n, xn will be close to x, and by lower semicontinuity,
f (xn) > t + ε . Hence, lim

n→∞

f (xn) ≥ t + ε > t. But (xn, tn) ∈ epi f implies f (xn) ≤ tn,

which implies the contradiction

lim
n→∞

f (xn)≤ lim
n→∞

tn = lim
n→∞

tn = t.

We have now established the following result.

Theorem 1.5. If f :X → [−∞,∞], then

epi f is closed⇔ all level sets are closed⇔ f is lower semicontinuous.

Example 1.6. Recall the function f (x) :=− lnx for x> 0 and f (x) :=∞ for x≤ 0.
It is easy to show that f is lower semicontinuous on IR; just observe that

{x ∈ IR : f (x)> t}= (−∞,e−t)

is open.

Example 1.7. Let f :X → (−∞,∞] and g:X → (−∞,∞]. If f and g are lower
semicontinuous, show that h := f +g is lower semicontinuous.

Solution. Suppose h(x0)> t for some real t. We must show that for all x near x0,
h(x)> t as well. First suppose g(x0) is finite. Then for small ε > 0, f (x0)+g(x0)> t
implies f (x0) > t − g(x0)+ ε . Since f and g are lower semicontinuous, for x near
x0, we can have f (x) > t − g(x0) + ε and g(x) > g(x0)− ε . For such x, h(x) =
f (x)+g(x)> t. If f (x0) and g(x0) are both ∞, then f (x0)> t/2 and g(x0)> t/2, and
for x near x0, f (x)> t/2 and g(x)> t/2, which implies h(x)> t.
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2. Minimization of Convex Functions

2.1. The Finite-Dimensional Case

In this section, convexity of f is not needed or assumed.

Theorem 2.1. Let f : IRd → [−∞,∞] be lower semicontinuous, and let C be a
nonempty, closed and bounded subset of IRd . Then f achieves its minimum on C; i.e.,
there is some x0 ∈C with f (x0) = infx∈C f (x).

Remark 2.2. If f > −∞ on C, then since the minimum is achieved, we con-
clude that infx∈C f (x) = f (x0) > −∞. If there is an x1 ∈ C with f (x1) < ∞, then
infx∈C f (x)≤ f (x1)< ∞.

Before proving Theorem 2.1, we need the following alternative characterization
of lower semicontinuity using sequences. We say that f is sequentially lower semi-
continuous if whenever xn→ x and f (xn)→ L, we have f (x) ≤ L, where L may be
finite or ±∞.

Theorem 2.3. If f :X→ [−∞,∞], then f is sequentially lower semicontinuous⇔
f is lower semicontinuous.

Proof. By Theorem 1.5, the condition “ f is lower semicontinuous” is equivalent
to “epi f is closed.” First suppose f is sequentially lower semicontinuous and that
(xn, tn)→ (x, t), where (xn, tn) ∈ epi f and (x, t) ∈ X × IR. Then xn→ x and f (xn) ≤
tn→ t. Put L := limn→∞ f (xn). Then there is a subsequence f (xnk)→ L, and we have
xnk → x and f (xnk)≤ tnk → t. By sequential lower semicontinuity,

f (x)≤ L = lim
k→∞

f (xnk)≤ lim
k→∞

tnk = t,

which says (x, t) ∈ epi f as required.
For the converse, suppose epi f is closed. If xn → x and L := limn→∞ f (xn), we

must show that f (x)≤ L. If L = ∞, the result is trivially true. Otherwise, L is finite or
−∞. If L is finite, then for large n, f (xn) is finite, and we have (xn, f (xn)) ∈ epi f and
converging to (x,L), which must belong to epi f . Hence, f (x) ≤ L. If L = −∞, let t
be any real number. Then for large n we must have f (xn)≤ t; i.e., (xn, t) ∈ epi f and
converges to (x, t) ∈ epi f . Thus, f (x) ≤ t. Now let t →−∞ to get f (x) ≤ −∞ = L.
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Proof of Theorem 2.1. Put L := infx∈C f (x). Then there is a sequence xn ∈ C
with f (xn)→ L. Since C is a closed and bounded subset of IRd , C is sequentially
compact, which implies there is a subsequence xnk converging to a point x0 ∈ C.
Since f (xnk)→ L, Theorem 2.3 implies f (x0) ≤ L, which, by its definition, is less
than or equal to f (x) for all x ∈C.

2.2. The Infinite-Dimensional Case

The proof of Theorem 2.1 used the fact that closed and bounded subsets of IRd are
sequentially compact. Recall that a set C is sequentially compact if every sequence
in C has a converging subsequence that converges to a point in C.

In infinite-dimensional spaces, closed and bounded sets need not be sequentially
compact. However, a bounded sequence in a Hilbert space always has a weakly
convergent subsequence [1, p. 26, Theorem 1.8.1].

Definition 2.4. A sequence xn in an inner-product space X converges weakly to
x, denoted by xn ⇀ x, if 〈xn,z〉 → 〈x,z〉 for all z ∈ X .

Lemma 2.5. A closed, convex subset C of a Hilbert space is weakly closed in the
sense that if xn ∈C converges weakly to x, then x ∈C.

Proof. If C is empty, there is nothing to prove. Otherwise, by the Projection
Theorem, we can write

〈x− x̂,y− x̂〉 ≤ 0, y ∈C.

Replace y by xn ∈C and take limits to get

0≥ lim
n→∞
〈x− x̂,xn− x̂〉= 〈x− x̂,x− x̂〉= ‖x− x̂‖2.

Hence, x = x̂ ∈C.

We define a function f to be weakly sequentially lower semicontinuous if when-
ever xn ⇀ x and f (xn)→ L, we have f (x)≤ L, where L may be finite or ±∞.

Theorem 2.6. Let X be a Hilbert space, and suppose f :X → [−∞,∞] is convex.
Then f is weakly sequentially lower semicontinuous⇔ f is lower semicontinuous.

Proof. Suppose f is weakly sequentially lower semicontinuous. We will show
that f is sequentially lower semicontinuous. Suppose xn → x and f (xn)→ L. We
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must show that f (x) ≤ L. To see this, just use the Cauchy–Schwarz inequality to
show that xn → x implies xn ⇀ x, and then weak sequential lower semicontinuity
gives f (x)≤ L.

For the converse, suppose epi f is closed. If xn ⇀ x and L := limn→∞ f (xn), we
must show that f (x)≤ L. If L = ∞, the result is trivially true. Otherwise, L is finite or
−∞. If L is finite, then for large n, f (xn) is finite, and we have (xn, f (xn)) ∈ epi f and
converging weakly to (x,L), which must belong to epi f by Lemma 2.5 (the convexity
of f means epi f is convex, which is required to apply the lemma). Hence, f (x)≤ L.
If L = −∞, let t be any real number. Then for large n we must have f (xn) ≤ t; i.e.,
(xn, t)∈ epi f and converges weakly to (x, t)∈ epi f . Thus, f (x)≤ t. Now let t→−∞

to get f (x)≤−∞ = L.

Theorem 2.7. Let X be a Hilbert space, and suppose f :X → [−∞,∞] is lower
semicontinuous and convex. If C is a closed, bounded, and convex subset of X, then
f achieves its minimum on C; i.e., there is some x0 ∈C with f (x0) = infx∈C f (x).

Proof. Put L := infx∈C f (x). Then there is a sequence xn ∈ C with f (xn)→ L.
Since C is bounded and X is a Hilbert space, there is a subsequence xnk that converges
weakly to some x, which must lie in C by Lemma 2.5 (this is where the convexity of
C is used). Since f (xnk)→ L, Theorem 2.6 (which uses the convexity and lower
semicontinuity of f ) implies f (x0)≤ L, which, by its definition, is less than or equal
to f (x) for all x ∈C.

Remark 2.2 applies to Theorem 2.7.

In some cases, the set C is not bounded, and so we cannot apply Theorem 2.7.
However, suppose f (x)→∞ as ‖x‖→∞. Such a function is said to be coercive. If f
is coercive and f (x1)< ∞ for some x1 ∈C, then any minimizer of f on C must occur
for x inside some closed ball of finite radius r — we only need r large enough that
‖x‖ > r implies f (x) > f (x1). If C is closed and convex, then so is the intersection
of C with a closed ball. We can then apply Theorem 2.7 to this intersection.

Proposition 2.8 (Prop. 11.11 in [2]). Let f :X → [−∞,∞]. If the level sets {x ∈
X : f (x) ≤ k} are bounded for k = 1,2, . . . , then f is coercive, and if f is coercive,
then for all real t, level sets {x ∈ X : f (x)≤ t} are bounded.

Proof. Given any positive integer M, we must show that for all sufficiently large
‖x‖, f (x) > M. Since the level set {x ∈ X : f (x) ≤M} is bounded, there is some L
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such that {x ∈ X : f (x)≤M} ⊂ {x ∈ X : ‖x‖ ≤ L}; equivalently, for all ‖x‖> L, we
have f (x)> M.

Now suppose f is coercive, but for some real t, {x∈ X : f (x)≤ t} is not bounded.
Then for every n = 1,2, . . . , there is an xn with f (xn)≤ t, but ‖xn‖> n, contradicting
the coercivity of f .

3. Applications of the Projection Theorem

3.1. Decay of Convex Functions and the Proximal Mapping

Some convex functions such as f (x) := x2 and f (x) := ex are bounded below,
while others such as f (x) := − lnx tend to −∞ as x→ ∞. However, most convex
functions cannot tend to −∞ faster than a linear function of x. For example, − lnx≥
1− x is a nice illustration of this observation. Here is a precise statement of the
general result.

Theorem 3.1. Let f be a proper, convex, lower-semicontinuous function defined
on a real Hilbert space X. Then there exist x̂0,x1 ∈ X such that f (x̂0) is finite and

f (x)≥ f (x̂0)+ 〈x− x̂0,x1〉, x ∈ X . (8)

Proof. Since f is not everywhere infinite, let x0 be such that f (x0) is finite. Since
(x0, f (x0)) ∈ epi f , epi f is nonempty. By Theorem 1.5, epi f is closed in X× IR, and
by definition of convex function, epi f is convex. Now choose any −∞ < t0 < f (x0)
so that (x0, t0) /∈ epi f . By the Projection Theorem, there exists (x̂0, t̂0) ∈ epi f with
(cf. (7)) 〈

(x0, t0)− (x̂0, t̂0),(x, t)− (x̂0, t̂0)
〉
≤ 0, (x, t) ∈ epi f ,

which we write more explicitly as

〈x0− x̂0,x− x̂0〉+(t0− t̂0)(t− t̂0)≤ 0, t ∈ IR and f (x)≤ t. (9)

Specializing to x = x0 and t = f (x0)+λ for λ ≥ 0 yields

‖x0− x̂0‖2 +(t0− t̂0)( f (x0)+λ − t̂0)≤ 0. (10)

Letting λ → ∞ implies t0 ≤ t̂0. We show below that

t0 < t̂0 and f (x̂0) = t̂0. (11)

10



ConvexityNotes.tex 8/22/2013, 8/11/2015, 10/6/2016, March 18, 2017

Accepting this for now, consider any x for which f (x) is finite and put t = f (x) in (9)
and use the equality in (11) to replace the right-most appearance of t̂0. This yields

〈x0− x̂0,x− x̂0〉+(t0− t̂0)( f (x)− f (x̂0))≤ 0.

By the strict inequality in (11), we can divide through by the negative quantity t0− t̂0
and rearrange to get (8) with x1 := (x0− x̂0)/( t̂0− t0). At this point we have proved
(8) only for those x with f (x) finite. But if f (x) = ∞, then (8) is trivally true.

It remains to establish (11). With regard to the inequality, as noted above (11),
we already know that t0 ≤ t̂0. Suppose t0 = t̂0. Then (10) implies x0 = x̂0. We thus
arrive at (x0, t0) = (x̂0, t̂0)∈ epi f , contradicting our choice of t0 so that (x0, t0) /∈ epi f .
Therefore, t0 < t̂0. To prove the equality in (11), first note that (x̂0, t̂0) ∈ epi f implies
f (x̂0) ≤ t̂0. Suppose f (x̂0) < t̂0. Then taking x = x̂0 and t = f (x̂0) in (9) tells us
that (t0− t̂0)( f (x̂0)− t̂0) ≤ 0, which is impossible for the product of two negative
numbers.

We say that a convex function f is strongly convex if g(x) := f (x)− µ

2 ‖x‖
2 is

convex for some µ > 0.

Corollary 3.2. Let f be a proper, convex, lower-semicontinuous function defined
on a real Hilbert space X. If f is strongly convex, then f is coercive.

Proof. Consider the convex function g(x) := f (x)− µ

2 ‖x‖
2, which is proper and

lower semicontinuous. Apply the preceding theorem and then substitute the defini-
tion of g to get

f (x)≥ f (x̂0)+
µ

2

[
‖x‖2−‖x̂0‖2]+ 〈x− x̂0,x1〉.

By the Cauchy–Schwarz inequality, 〈x,x1〉 ≥ −‖x‖‖x1‖, and so

f (x)≥ f (x̂0)+
µ

2

[
‖x‖2−‖x̂0‖2]−‖x‖‖x1‖−〈x̂0,x1〉,

which tends to infinity as ‖x‖→ ∞.

Corollary 3.3. Let f be a proper, convex, lower-semicontinuous function defined
on a real Hilbert space X. Then f (x)+ µ

2 ‖x− x0‖2 is coercive.

Proof. Observe that[
f (x)+ µ

2 ‖x− x0‖2]− µ

2 ‖x‖
2 = f (x)−µ〈x,x0〉+ µ

2 ‖x0‖2

is convex since it is the sum of the convex function f , the linear function −µ〈x,x0〉,
and a constant. Now apply the previous corollary.

For a proper, convex, lower-semicontinuous function f on a real Hilbert space X ,
the proximal mapping is

(prox f )(x) := argmin
y∈X

[
f (y)+ 1

2‖y− x‖2], x ∈ X .

11
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3.2. Subgradients

Let f be a convex function on an inner-product space X . Given a point x ∈ X , if
there exists a point z ∈ X such that

f (y)≥ f (x)+ 〈y− x,z〉, y ∈ X ,

then we say that z is a subgradient of f at x. Theorem 3.1 gives conditions under
which there is at least one point x̂0 where f has a subgradient.

Example 3.4. Consider the function f : IRd → IR defined by f (x) := ‖x‖1 :=
∑

d
k=1 |xk|, where x = [x1, . . . ,xd ]

T ∈ IRd . We show that if z = [z1, . . . ,zd ]
T with zk :=

sgn(xk), then z is a subgradient of f at x. We must show that

d

∑
k=1
|yk| ≥

d

∑
k=1
|xk|+

d

∑
k=1

(yk− xk)zk.

The first step is to rewrite the right-hand side as

d

∑
k=1

{
|xk|− xkzk

}
+

d

∑
k=1

ykzk.

Since xkzk = xk sgn(xk) = |xk|, the preceding display reduces to

d

∑
k=1

ykzk ≤
∣∣∣∣ d

∑
k=1

ykzk

∣∣∣∣≤ d

∑
k=1
|ykzk| ≤

d

∑
k=1
|yk|,

where the last step uses the fact that |zk| ≤ 1. Careful analysis of the foregoing steps
reveals that if xk = 0, we can allow zk to be any number in the interval [−1,1].

Example 3.5. Let A be a d× p matrix of real numbers, and consider the function
f : IRp→ IR defined by f (x) := ‖Ax‖1, where x = [x1, . . . ,xp]

T ∈ IRp. We show that
z := ATu, where ui := sgn((Ax)i) is a subgradient of f at x. We must show that

‖Ay‖1 ≥ ‖Ax‖1 + 〈y− x,ATu〉
= ‖Ax‖1 + 〈A(y− x),u〉,

which we can rewrite as

d

∑
i=1
|(Ay)i| ≥

d

∑
i=1
|(Ax)i|+

d

∑
i=1

[(Ay)i− (Ax)i]ui.

12
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The first step is to rewrite the right-hand side as

d

∑
i=1

{
|(Ax)i|− (Ax)iui

}
+

d

∑
i=1

(Ay)iui.

Since (Ax)iui = (Ax)i sgn((Ax)i) = |(Ax)i|, the preceding display reduces to

d

∑
i=1

(Ay)iui ≤
∣∣∣∣ d

∑
i=1

(Ay)iui

∣∣∣∣≤ d

∑
i=1
|(Ay)iui| ≤

d

∑
i=1
|(Ay)i|,

where the last step uses the fact that |ui| ≤ 1. Careful analysis of the foregoing steps
reveals that if (Ax)i = 0, we can allow ui to be any number in the interval [−1,1].

Example 3.6. Suppose

fmax(y) := max
1≤k≤n

fk(y),

where each fk has a subgradient zk at a point x; i.e.,

fk(y)≥ fk(x)+ 〈y− x,zk〉, for all y. (12)

Put K(x) := {k : fk(x) = fmax(x)}. For each k ∈ K(x), let λk be nonnegative with
∑k∈K(x) λk = 1. We claim that

z∗ := ∑
k∈K(x)

λkzk

is a subgradient of fmax at x. To prove this, first note that for any k ∈ K(x),

fmax(y)≥ fk(y), by the definition of fmax,
≥ fk(x)+ 〈y− x,zk〉, by (12),
= fmax(x)+ 〈y− x,zk〉, since k ∈ K(x).

Multiply through by λk and sum over k ∈ K(x) to get

fmax(y)≥ fmax(x)+
〈

y− x, ∑
k∈K(x)

λkzk︸ ︷︷ ︸
:=z∗

〉
.

When each fk is differentiable at x, we have zk = ∇ fk(x).

13



ConvexityNotes.tex 8/22/2013, 8/11/2015, 10/6/2016, March 18, 2017

References

[1] A. V. Balakrishnan, Applied Functional Analysis, 2nd ed. New York: Springer, 1981.
[2] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. New York: Springer, 2011.
[3] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed. New York:

Springer, 1998.
[4] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed. New York:

Wiley, 1999.
[5] I. Gohberg and S. Goldberg, Basic Operator Theory. Boston: Birkhäuser, 1980.
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