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Abstract

In Section 1 the Fourier transform is shown to arise naturally in the study of the
response of linear, time-invariant systems to sinusoidal inputs. In Section 2, the Dirac
delta function is introduced. Since the delta function cannot exist as an ordinary
function, it is approximated in Section 3 using summability kernels. In Section 4,
summability kernels are used to prove Fourier inversion theorems. In Section 5,
positive-semidefinite functions are introduced, and a weak version of Bochner’s the-
orem is proved. This result is then used to motivate Bochner’s theorem itself, which is
proved using results from probability theory about characteristic functions. Section 6
derives Herglotz’s theorem, which is a version of Bochner’s theorem for positive-
semidefinite sequences.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu

1. Response of Linear Time-Invariant Systems to Sinusoidal
Inputs

The Fourier transform arises naturally when considering the response of a linear,
time-invariant system to a sinusoidal input. If the system has impulse response h,
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then the response to the complex sinusoid x(t) = e jωt is the convolution∫
∞

−∞

h(τ)x(t − τ)dτ =
∫

∞

−∞

h(τ)e jω(t−τ) dτ

=

(∫
∞

−∞

h(τ)e− jωτ dτ

)
e jωt

= H(ω)e jωt ,

where
H(ω) :=

∫
∞

−∞

h(τ)e− jωτ dτ

is the Fourier transform of h.12 We see then that system response to e jωt is propor-
tional to e jωt . In other words, H(ω) is an eigenvalue and e jωt is the corresponding
eigenfunction.

2. The Delta Function

Recall that the Dirac delta function is defined by the two properties

δ (t) = 0, t ̸= 0, (1)

and ∫
∞

−∞

δ (t)dt = 1. (2)

Since δ (t) = 0 for t ̸= 0, we see that for any function g,

g(t)δ (t) = g(0)δ (t), for all t.

Thus, ∫
∞

−∞

g(t)δ (t)dt =
∫

∞

−∞

g(0)δ (t)dt = g(0)
∫

∞

−∞

δ (t)dt = g(0), by (2).

1 We assume that the system under consideration is stable; i.e., its impulse response is integrable in
the sense that ∫

∞

−∞

|h(t)|dt < ∞.

Since h is integrable and since x is bounded, it is clear that the product h(τ)x(t−τ) is an integrable function
of τ . Thus, the convolution integral is well defined. Similarly, the product h(τ)e− jωτ is integrable, and the
integral for H(ω) is well defined. We also note that H(ω) is bounded since

|H(ω)| ≤
∫

∞

−∞

∣∣h(τ)e− jωτ
∣∣dτ =

∫
∞

−∞

|h(τ)|dτ < ∞.

2 Given 1 ≤ p < ∞, if
∫

∞

−∞
|h(t)|p dt < ∞, we say h ∈ Lp; hence, an impulse response h is stable if

h ∈ L1. We say h has finite energy if h ∈ L2.
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It now follows that the Fourier transform of δ is

∆(ω) :=
∫

∞

−∞

δ (t)e− jωt dt = e− jω·0 = 1.

3. Summability Kernels

Since the delta function cannot exist as an ordinary function, we approximate it
with a summability kernel. We say that a family of functions {δn(t)} is a summa-
bility kernel if each δn is such that∫

∞

−∞

δn(t)dt = 1; (3)

there is a finite constant M with∫
∞

−∞

|δn(t)|dt ≤ M, for all n, (4)

and for all ν > 0,
lim
n→∞

∫
{|t|≥ν}

|δn(t)|dt = 0. (5)

Clearly (3) is equivalent to (2). A little thought shows that (5) is an attempt to ap-
proximate (1). If each δn(t) is nonnegative, then (4) is implied by (3) with M = 1. In
general, (4) is just a technicality.

Since the Fourier transform of the delta function is one, a great way to define
δn(t) is by inverse Fourier transforming some ∆n(ω) as in (6) such that ∆n(ω)→ 1.
For example [2, Sec. 9.7], if

∆n(ω) := e−|ω|/n,

then clearly ∆n(ω)→ 1 for all ω . It is also easy to calculate δn(t). Since ∆n(ω) is
real and even,

δn(t) =
1

2π

∫
∞

−∞

∆n(ω)e jωt dω (6)

=
1

2π

∫
∞

−∞

∆n(ω)cos(ωt)dω

=
1
π

∫
∞

0
∆n(ω)cos(ωt)dω

=
1
π

∫
∞

0
e−ω/n cos(ωt)dω

= Re
1
π

∫
∞

0
e−ω/ne jωt dω

=
n/π

1+(nt)2 .
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We now verify (3)–(5). To establish (3), write∫
∞

−∞

δn(t)dt =
2n
π

∫
∞

0

1
1+(nt)2 dt =

2
π

∫
∞

0

1
1+θ 2 dθ =

2
π

tan−1
θ

∣∣∣∞
0
= 1.

Next, since δn is nonnegative, (4) holds with M = 1. Finally, for (5), write∫
∞

ν

n/π

1+(nt)2 dt =
∫

∞

nν

1/π

1+θ 2 dθ → 0 as n → ∞.

We also note that our particular kernel has one additional property. Observe that
for |t| ≥ ν > 0,

δn(t) =
1
n
· n2/π

1+(nt)2 ≤ 1
n
· n2/π

n2t2 ≤ 1
n
· 1

πν2 .

Hence,

|δn(t)| ≤
Bν

n
, for |t| ≥ ν , (7)

where Bν := (πν2)−1.

Theorem 1 (Sifting). Let δn be a summability kernel that also satisfies (7). If h
is integrable and continuous at t, then

lim
n→∞

∫
∞

−∞

h(t − τ)δn(τ)dτ = h(t).

Proof. Write

en :=
∫

∞

−∞

h(t − τ)δn(τ)dτ −h(t).

By (3) we can write

h(t) =
∫

∞

−∞

h(t)δn(τ)dτ,

and so
en =

∫
∞

−∞

[h(t − τ)−h(t)]δn(τ)dτ.

Since h is continuous at t, for every ε > 0, there is a ν > 0 such that

|τ|< ν ⇒ |h(t − τ)−h(t)|< ε.

Now write

|en| ≤
∫
{|τ|<ν}

|h(t − τ)−h(t)| |δn(τ)|dτ +
∫
{|τ|≥ν}

|h(t − τ)−h(t)| |δn(τ)|dτ.
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Let In and Jn denote these two integrals. Then

In ≤ ε

∫
{|τ|<ν}

|δn(τ)|dτ ≤ ε

∫
∞

−∞

|δn(τ)|dτ ≤ εM,

by (4). Next, Jn is upper bounded by∫
{|τ|≥ν}

|h(t − τ)| |δn(τ)|dτ +
∫
{|τ|≥ν}

|h(t)| |δn(τ)|dτ. (8)

The integral on the right is equal to

|h(t)|
∫
{|τ|≥ν}

|δn(τ)|dτ,

which goes to zero by (5). Using (7), the integral on the left in (8) is upper bounded
by

Bν

n

∫
{|τ|≥ν}

|h(t − τ)|dτ ≤ Bν

n

∫
∞

−∞

|h(t − τ)|dτ =
Bν

n

∫
∞

−∞

|h(θ)|dθ .

4. Fourier Inversion Theorems

We begin with the well-known fact that convolution in the time domain corre-
sponds to multiplication in the frequency domain.

Theorem 2 (Convolution). If h is integrable with Fourier transform H, and if G
is integrable with inverse Fourier transform g, then3

∫
∞

−∞

h(t − τ)g(τ)dτ =
1

2π

∫
∞

−∞

H(ω)G(ω)e jωt dω.

Proof. By a change of variable,∫
∞

−∞

h(t − τ)g(τ)dτ =
∫

∞

−∞

h(θ)g(t −θ)dθ .

Since g is an inverse transform,

g(t −θ) =
1

2π

∫
∞

−∞

G(ω)e jω(t−θ) dω.

3 Both integrals in the Convolution Theorem are well defined. Since g is the inverse Fourier transform
of the integrable function G, g is bounded (recall footnote 1). Since h is integrable so is the product
h(t − τ)g(τ). Similarly, since H is bounded (by footnote 1) and G is integrable, so is H(ω)G(ω)e jωt .
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Substituting this formula shows that the convolution is equal to∫
∞

−∞

h(θ)
[

1
2π

∫
∞

−∞

G(ω)e jω(t−θ) dω

]
dθ ,

or4

1
2π

∫
∞

−∞

G(ω)

[∫
∞

−∞

h(θ)e− jωθ dθ

]
e jωt dω,

which is the desired result.

Theorem 3. Under the conditions of the Sifting Theorem, if δn is the inverse
transform of some integrable ∆n, then

h(t) = lim
n→∞

1
2π

∫
∞

−∞

H(ω)∆n(ω)e jωt dω. (9)

Proof. Use the Sifting and Convolution Theorems.

Theorem 4 (Inversion). If h is integrable and continuous at t, and if its transform
H is also integrable, then

h(t) =
1

2π

∫
∞

−∞

H(ω)e jωt dω.

Proof. We first apply the previous theorem to a bounded sequence ∆n(ω) → 1.
Since H(ω) is integrable, the dominated convergence theorem allows us to bring the
limit inside the integral in (9). The result follows because ∆n(ω)→ 1 for all ω .

Example. Take h(t) = (1−|t|)I[−1,1](t). Clearly, h is continuous and integrable.
Since h is real valued and even, an easy calculation shows that

H(ω) = 2
∫ 1

0
(1− t)cos(ωt)dt =

( sin(ω/2)
ω/2

)2
.

Since H is also integrable, and since h is continuous,

h(t) =
1

2π

∫
∞

−∞

( sin(ω/2)
ω/2

)2
e jωt dω.

In particular, if we take t = 0 and use the fact that h(0) = 1, we find that∫
∞

−∞

( sinω

ω

)2
dω = π. (10)

4 Changing the order of integration is justified by the Tonelli and Fubini Theorems, and uses the fact
that both h and G are integrable.
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Another popular summability kernel is obtained by taking

∆n(ω) :=
(

1− |ω|
n

)
I[−n,n](ω).

Since ∆n(ω) = h(ω/n), we can use the result of the preceding example to write

δn(t) =
n

2π
H(−nt) =

n
2π

( sin(nt/2)
nt/2

)2
.

On account of (10), we see that (3) holds. Since δn is nonnegative, (4) holds automat-
ically with M = 1. It is also easy to see that (5) holds. Property (7) obviously holds
with Bν = 2/(πν2). By Theorem 3, if h is integrable and continuous at t, then

h(t) = lim
n→∞

1
2π

∫ n

−n

(
1− |ω|

n

)
H(ω)e jωt dω. (11)

Both of the summability kernels we have introduced are nonnegative and their
transforms satisfy

0 ≤ ∆n(ω)≤ ∆n+1(ω)≤ 1.

This fact can be used to prove the following useful result.

Theorem 5 (Positive Inversion). If h is integrable and continuous at t = 0, and
if its transform H is nonnegative, then H is integrable. For all t at which h is contin-
uous,

h(t) =
1

2π

∫
∞

−∞

H(ω)e jωt dω.

Proof. We can apply Theorem 3 to either of our bounded, nonnegative summa-
bility kernels. Taking t = 0 in (9) yields

h(0) = lim
n→∞

1
2π

∫
∞

−∞

H(ω)∆n(ω)dω.

Since the integrands are nonnegative and nondecreasing, the monotone convergence
theorem allows us to bring the limit inside the integral. Hence,

h(0) =
1

2π

∫
∞

−∞

H(ω)dω,

and we see that H(ω) is integrable. Then, as argued in the proof of the Inversion
Theorem, we can bring the limit inside the integral in (9) for arbitrary continuity
points t.

7
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4.1. The L2 Theory†

Lemma 6. If g ∈ L2 ∩L1, then its autocorrelation function

h(t) :=
∫

∞

−∞

g(t + τ)g(τ)dτ

is a bounded, integrable, continuous function, and the transform of the autocorrela-
tion function is

H(ω) = |G(ω)|2.

Proof. Since g ∈ L2, we can write h(t) = ⟨g(t + ·),g⟩. Then by the Cauchy–
Schwarz inequality, |h(t)| ≤ ∥g∥2

2. To show that h ∈ L1, write5

∫
∞

−∞

|h(t)|dt =
∫

∞

−∞

∣∣∣∣∫ ∞

−∞

g(t + τ)g(τ)dτ

∣∣∣∣dt

≤
∫

∞

−∞

|g(τ)|
∫

∞

−∞

|g(t + τ)|dt dτ = ∥g∥2
1.

Since h ∈ L1, we can write its Fourier transform integral and change the order of
integration as above to obtain

H(ω) =
∫

∞

−∞

[∫
∞

−∞

g(t + τ)g(τ)dτ

]
e− jωt dt = |G(ω)|2.

To establish the continuity of h at any point t, suppose that tn → t. Then ∥g(tn + ·)−
g(t + ·)∥2 → 0 by continuity of translation [2, p. 196, Th. 9.5]. By continuity of the
inner product, ⟨g(tn + ·),g⟩ → ⟨g(t + ·),g⟩; i.e., h(tn)→ h(t). Since the sequence tn
was arbitrary, h is continuous at t.

Lemma 7. If g ∈ L2 ∩L1, then G ∈ L2 and ∥g∥2
2 =

∥G∥2
2

2π
.

Proof. Apply the Positive Inversion Theorem with t = 0 to the autocorrelation
function h of the preceding lemma, and note that h(0) = ∥g∥2

2 and
∫

∞

−∞
H(ω)dω =∫

∞

−∞
|G(ω)|2 dω = ∥G∥2

2.

For arbitrary g ∈ L2, put gn(t) := g(t)I[−n,n](t). Then gn ∈ L2 ∩L1 by Hölder’s
inequality. Further, since ∥gn − g∥2 → 0, gn is Cauchy in L2. By the preceding
lemma, ∥Gn −Gm∥2 → 0 as n,m → ∞; i.e., Gn is Cauchy in L2. Hence, there exists

†
The material in this subsection is not needed for Bochner’s Theorem.

5 Changing the order of integration is justified by Tonelli’s Theorem.
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a G ∈ L2 with ∥Gn −G∥2 → 0. This limit G is the Fourier transform of g ∈ L2.
Furthermore,6

∥g∥2 = lim
n→∞

∥gn∥2 =
1√
2π

lim
n→∞

∥Gn∥2 =
1√
2π
∥G∥2,

which is Parseval’s equation.

5. Bochner’s Theorem

A function h is positive semidefinite if for any times t1, . . . , tn and any complex
constants c1, . . . ,cn,

n

∑
i=1

n

∑
k=1

cih(ti − tk)ck ≥ 0. (12)

Taking n = 1 and c1 = 1 shows that h(0)≥ 0.

Lemma 8. If h is a continuous, positive-semidefinite function, then for T > 0,

HT (ω) :=
∫ T

−T

(
1− |t|

T

)
h(t)e− jωt dt ≥ 0. (13)

Proof. The proof consists of two parts. We first show that for any T > 0,∫ T

−T

∫ T

−T
h(t −θ)e− jω(t−θ) dt dθ ≥ 0. (14)

We then show that this double integral is equal to 2T H2T (ω). It follows that HT (ω)≥
0 for all T > 0.

Since h is continuous, the integral in (14) is equal to a limit of finite Riemann
sums of the form

∑
i

∑
k

h(ti − tk)e− jωti∆tie jωtk ∆tk.

These sums are nonnegative because h is positive semidefinite. This establishes (14).
It remains to simplify the double integral in (14). Write it as∫ T

−T

∫
∞

−∞

I[−T,T ](t)h(t −θ)e− jω(t−θ) dt dθ .

Make the change of variable τ = t −θ and obtain∫ T

−T

∫
∞

−∞

I[−T,T ](τ +θ)h(τ)e− jωτ dτ dθ .

6 By the triangle inequality, ∥x + y∥ ≤ ∥x∥+ ∥y∥, it follows that
∣∣∥x∥− ∥y∥

∣∣ ≤ ∥x − y∥. Hence, if
∥xn − x∥→ 0, then ∥xn∥→ ∥x∥.

9
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Now change the order of integration to get∫
∞

−∞

h(τ)e− jωτ

(∫ T

−T
I[−T,T ](τ +θ)dθ

)
dτ. (15)

To evaluate the inner integral with respect to θ , make the change of variable s =−θ .
Then the inner integral becomes∫ T

−T
I[−T,T ](τ − s)ds =

∫
∞

−∞

I[−T,T ](s) I[−T,T ](τ − s)ds.

In other words, we have the convolution of two rectangular pulses. Hence,

∫ T

−T
I[−T,T ](τ +θ)dθ =

{
2T −|τ|, |τ| ≤ 2T,

0, otherwise.

Substituting this into (15), which is equal to the double integral in (14), we find that
(14) is equal to 2T H2T (ω).

Theorem 9 (Bochner, weak version). Let h be an integrable, continuous, positive-
semidefinite function. Then

H(ω) :=
∫

∞

−∞

h(t)e− jωt dt ≥ 0, (16)

H is integrable, and

h(t) =
1

2π

∫
∞

−∞

H(ω)e jωt dω. (17)

Proof. Since h is integrable, in (13) we can let T = n and apply the dominated
convergence theorem to obtain (16). The integrability of H and (17) follow immedi-
ately from the Positive Inversion Theorem.

To motivate Bochner’s Theorem, observe that if h(0)> 0, then (17) can be rewrit-
ten as

h(t)
h(0)

=
∫

∞

−∞

e jωt H(ω)

2πh(0)
dω.

The quotient on the right is nonnegative. Taking t = 0 shows that it integrates to one,
and is therefore a probability density. If we denote the corresponding cumulative
distribution function by F , then

h(t)
h(0)

=
∫

∞

−∞

e jωt dF(ω),

10
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or, if K(ω) := 2πh(0)F(ω),

h(t) =
1

2π

∫
∞

−∞

e jωt dK(ω).

Usually K is called the spectral distribution function. Bochner’s theorem asserts
the existence of such a distribution function even if h is not integrable.

Theorem 10 (Bochner). Let h be a continuous, positive-semidefinite function with
h(0)> 0. Then there is a cumulative distribution function F such that

h(t)
h(0)

=
∫

∞

−∞

e jωt dF(ω), (18)

or, writing K(ω) := 2πh(0)F(ω),

h(t) =
1

2π

∫
∞

−∞

e jωt dK(ω).

Proof. Let

qT (t) :=
(

1− |t|
T

)
I[−T,T ](t)

so that the integral in (13) can be written as

HT (ω) =
∫

∞

−∞

qT (t)h(t)e− jωt dt.

Since the product qT h is integrable and continuous and has nonnegative transform
HT , the Positive Inversion Theorem tells us that HT is integrable, and

qT (t)h(t) =
1

2π

∫
∞

−∞

HT (ω)e jωt dω,

which we can rewrite as

qT (t)h(t)
h(0)

=
∫

∞

−∞

e jωt HT (ω)

2πh(0)
dω.

This equation shows that the left-hand side is the characteristic function of the prob-
ability density HT (ω)/2πh(0). Since qT (t)→ 1, the characteristic functions on the
left converge to the continuous limit h(t)/h(0). By [1, p. 350, Corollary 1], there
exists a limiting cumulative distribution function F to which the cumulative distribu-
tions corresponding to HT (ω)/[2πh(0)] converge, and the characteristic function of
F is the limit h(t)/h(0); i.e., (18) holds.

11
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Remark. From (18) we see that h(−t) = h(t) and |h(t)| ≤ h(0). In fact, these
are implied directly by the positive semidefiniteness of h. Let Q denote the n× n
matrix with elements h(ti − tk), and let c = [c1, . . . ,cn]

′. Then (12) says that c∗Qc ≥ 0
for all c. Taking c = x+λy and considering the cases λ = j and λ = 1 shows that
y∗Qx = y∗Q∗x for all x and y. This implies that Q∗ = Q. For the case n = 2 with
t1 = t and t2 = 0, Q = Q∗ implies h(−t) = h(t). Let c = [e jθ ,e jϕ ]′. Then c∗Qc ≥ 0 is
equivalent to

h(0)≥−
[
e j(ϕ−θ)h(t)+ e− j(ϕ−θ)h(−t)

]
/2.

Using the fact that h(−t) = h(t) and writing h(t) = |h(t)|e jζ , where ζ = argh(t), we
find that

h(0)
|h(t)|

≥ −cos(ϕ −θ +ζ ).

Since ϕ and θ are arbitrary, we must have h(0)/|h(t)| ≥ 1, or h(0)≥ |h(t)|.

6. Herglotz’s Theorem — The Discrete Bochner Theorem

If h(n) is a discrete-time positive semidefinite sequence, then we would like to
write in analogy with (16) and (17),

H(ω) =
∞

∑
n=−∞

h(n)e− jωn ≥ 0, (19)

and
h(n) =

1
2π

∫
π

−π

H(ω)e jωn dω. (20)

The analog of Bochner’s Theorem would be

h(n) =
1

2π

∫
π

−π

e jωn dK(ω), (21)

where K(ω) = 2πh(0)F(ω) for some cumulative distribution function F .
We begin by noting that an argument analogous to that in the proof of Lemma 8

shows that

HN(ω) :=
N

∑
n=−N

(
1− |n|

N +1

)
h(n)e− jωn ≥ 0. (22)

Hence, if h is summable; i.e., if

∞

∑
n=−∞

|h(n)|< ∞,

12
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then HN → H in (19) and so H is well defined and nonnegative. Furthermore, the
series in (19) is absolutely and uniformly convergent. It follows that H is continu-
ous and therefore integrable on any finite interval. Thus, the integral in (20) is well
defined. Substituting the series for H into the integral in (20) and interchanging the
order of summation and integration (justified by the uniform convergence) shows that
(20) holds.

To prove the discrete analog of Bochner’s Theorem is more puzzling because
we cannot talk about the continuity of a discrete-time sequence. However, in the
proof of Bochner’s Theorem, all that the continuity of h(t) really bought us was the
tightness of the sequence of cumulative distributions corresponding to the densities
HT (ω)/2πh(0) [1, p. 304, Proof of Corollary 1]. Fortunately, the analogous cumu-
lative distributions in the discrete-time problem all live on a finite interval and are
therefore always tight.

Theorem 11 (Herglotz). If h(n) is a positive semidefinite sequence with h(0)> 0,
then there is a cumulative distribution function F such that if K(ω) := 2πh(0)F(ω),
then (21) holds.

Proof. With HN defined in (22), it is easy to see that7

1
2π

∫
π

−π

HN(ω)e jωk dω =
(

1− |k|
N +1

)
h(k)

for |k| ≤ N, and in particular,

1
2π

∫
π

−π

HN(ω)dω = h(0).

Consider the cumulative distribution function

FN(ω) :=
∫

ω

−π

HN(θ)

2πh(0)
dθ , −π ≤ ω ≤ π.

For ω <−π , put FN(ω) := 0 and for ω > π , put FN(ω) := 1. Since the correspond-
ing densities are supported on a common finite interval, the cumulative distributions
are tight [1, p. 290], and so there exists a subsequence Ni and a limiting cumula-
tive distribution function F such that for all bounded and continuous functions g [1,
pp. 288–289, Theorem 25.8],

lim
i→∞

∫
∞

−∞

g(ω)dFNi(ω) =
∫

∞

−∞

g(ω)dF(ω).

7 Since HN is defined by a finite sum, we do not need a discrete-time version of the Positive Inversion
Theorem. Hence, no preliminary results on Fourier series are needed here.
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Since FNi(ω) = 0 for ω < −π and FNi(ω) = 1 for ω > π , the limit F(ω) inherits
these properties. Hence, the above formula reduces to

lim
i→∞

∫
π

−π

g(ω)dFNi(ω) =
∫

π

−π

g(ω)dF(ω),

and we can write ∫
π

−π

e jωn dF(ω) = lim
i→∞

∫
π

−π

e jωn dFNi(ω)

= lim
i→∞

∫
π

−π

e jωn HNi(ω)

2πh(0)
dω

= lim
i→∞

(
1− |n|

Ni +1

)h(n)
h(0)

=
h(n)
h(0)

.

Formula (21) now follows.
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