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Abstract

Frequency analysis is introduced starting with the Fourier transform applied to
finite-duration waveforms, say T seconds. Then the Fourier series is introduced, and
it is pointed out that the Fourier series coefficients are proportional to samples of the
Fourier transform taken at frequencies that are integer multiples of 1/T .

The approximation of the Fourier transform integral by Riemann sums is used to
introduce the discrete Fourier transform (DFT). It is shown that if a continuous-time
waveform is sampled at rate fs for N samples, then the DFT of the samples, divided
by fs, is approximately equal to the Fourier transform evaluated at frequencies that
are integer multiples of fs/N. If fs = N/T , then these evaluation frequencies are
the multiples of 1/T associated with the Fourier series coefficients. If the equation
fs = N/T does not hold, this will not be the case; e.g., zero padding.

To conclude, we derive the sampling theorem for periodic waveforms, and we
give conditions under which the DFT approximation of the Fourier transform is exact.

It is assumed that the reader is familiar with Euler’s formulas

e jθ = cosθ + jθ , cosθ =
e jθ + e− jθ

2
, and sinθ =

e jθ − e− jθ

2 j
.
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To understand the last section, the reader needs to be familiar with the geometric
series, which says that for any complex number z,

N−1

∑
m=0

zm =


1− zN

1− z
, z 6= 1,

N, z = 1.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu

1. Introduction

The goal of frequency analysis is to process a signal x(t) and determine what
frequencies are present. For example, the standard form of a sinusoid is

x(t) = Acos(2π f0t +ϕ),

where A > 0 is the amplitude, f0 is the frequency, measured in units of inverse
seconds or Hertz (Hz), and ϕ is the phase, measured in radians.

In practice, we never observe x(t) for all−∞< t <∞. We typically have x(t) only
for t in a finite time interval, say [0,T ]. And in the digital world, we have even less
information. We have only finitely many samples, say N samples. In other words,
we have only x(n∆t) for n = 0, . . . ,N− 1, where fs := 1/∆t is called the sampling
rate. Our goal is to understand how to take finitely many samples of a signal x(t) and
determine what frequencies are present. We begin by focusing on the case when we
observe x(t) for all 0 ≤ t ≤ T . Once we understand how this works, we proceed to
the case of finitely many samples.

2. The Sinc Function

The sinc function is the key to our understanding. This function is defined by

sinc(θ) :=


sin(πθ)

πθ
, θ 6= 0,

1, θ = 0,

and is plotted in Fig. 1. The reason for including the factor of π is to make the zero
crossings occur when θ is a nonzero integer. Another important feature of sinc(θ) is
that the tallest peak occurs at θ = 0, has height 1, and width 2.a

a The width of a peak is measured between the zeros on either side. The tallest peak in Fig. 1 sits
between the zeros at θ =±1, so the width is (+1)− (−1) = 2.
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Figure 1. The function sinc(θ).

3. The Fourier Transform

Given a signal x(t) defined for −∞ < t < ∞, its Fourier transform or spectrum
is

X( f ) :=
∫

∞

−∞

x(t)e− j2π f t dt (1)

whenever this integral is defined. The quantity |X( f )| is called the magnitude spec-
trum.

Even when x(t) is defined for all t, in practice, we can observe it or measure it
only for a finite length of time, say 0≤ t ≤ T . In this case, we focus on∫ T

0
x(t)e− j2π f t dt. (2)

For example, suppose we observe x(t) = 1 for 0≤ t ≤ T . Then we need to compute∫ T
0 e− j2π f t dt.

Example 1. Show that

PT ( f ) :=
∫ T

0
e− j2π f t dt = e− jπT f ·T · sinc(T f ). (3)

Solution. Taking f = 0 in the above integral yields PT (0) =
∫ T

0 1dt = T . For
f 6= 0, we take the antiderivative of e− j2π f t and write

PT ( f ) =
e− j2π f t

− j2π f

∣∣∣∣t=T

t=0
=

e− j2π f T − e− j2π f 0

− j2π f

=
1− e− j2π f T

j2π f

3
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= e− jπT f · e
jπT f − e− jπT f

j2π f

= e− jπT f ·T · sin(πT f )
πT f

, by Euler’s formula.

The function PT ( f ) can be defined in MATLAB with the statement

PT = @(f)T*exp(-1j*pi*T*f).*sinc(T*f);

Since this function is complex valued, we usually plot its magnitude,

|PT ( f )|= T |sinc(T f )|
as shown in Fig. 2. Since sinc(θ) = 0 whenever θ is a nonzero integer, we must have
sinc(T f ) = 0 whenever f = m/T for a nonzero integer m. Also, the tallest peak has
height T and width 2/T .

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

Figure 2. The function |PT ( f )|= T |sinc(T f )| for T = 5. The height of the tallest peak is T = 5 and occurs
at f = 0.

Example 2. If the signal Ae j2π f0t is measured for 0≤ t ≤ T , show that its Fourier
transform is A ·PT ( f − f0).

Solution. Write∫ T

0

(
Ae j2π f0t)e− j2π f t dt = A

∫ T

0
e− j2π( f− f0)t dt = A ·PT ( f − f0),

where the second equality follows from (3) with f replaced by f − f0.

Example 3. If a signal having the formb

∑
k

xke j2π fkt

b Although it may seem restrictive to assume signals of this form, there is no loss of generality as we
see later in Section 4.
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is measured for 0≤ t ≤ T , show that its Fourier transform is∫ T

0

(
∑
k

xke j2π fkt
)

e− j2π f t dt = ∑
k

xkPT ( f − fk).

Solution. Write∫ T

0

(
∑
k

xke j2π fkt
)

e− j2π f t dt = ∑
k

xk

∫ T

0
e j2π fkte− j2π f t dt

= ∑
k

xk

∫ T

0
e− j2π( f− fk)t dt

= ∑
k

xkPT ( f − fk),

where the last step follows from (3) with f replaced by f − fk.

Example 4. Consider the waveform

ae j2π fat +be j2π fbt + ce j2π fct ,

whose line spectrum is shown in Fig. 3. As the plot shows, fa < fb < fc. This

fb 0fa

f (Hz)

b
a

fc

c

Figure 3. Line spectrum of ae j2π fat +be j2π fbt + ce j2π fct .

waveform is observed for 0 ≤ t ≤ T = 6, and its magnitude spectrum is shown in
the top graph of Fig. 4. Determine the frequencies fa, fb, fc and the corresponding
values of |a|, |b|, |c|.

Solution. Taking the transform term by term as justified by Example 3 , we obtain

aPT ( f − fa)+bPT ( f − fb)+ cPT ( f − fc).

From the graph it appears that fa = −1.5 Hz, fb = −0.5 Hz, and fc = 2 Hz. The
corresponding peak heights are 3, 2, and 5. Recalling that the tallest peak of each
PT (·) factor is T , we divide the peak heights by T = 6 to get |a| = 3/6 = 1/2, |b| =
2/6 = 1/3, and |c| = 5/6. Of course, if we had plotted the magnitude spectrum
divided by T , we could have read |a|, |b|, and |c| directly from the graph!
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Figure 4. Magnitude spectra of ae j2π fat + be j2π fbt + ce j2π fct observed for 0 ≤ t ≤ T = 6. The top and
bottom graphs differ only in the values of fa, fb, and fc.

Example 5. If we change the frequencies fa, fb, and fc a little bit, we get the
bottom graph in Fig. 4. This graph was generated with fa = −

√
2 ≈ −1.414 Hz,

fb =−1/
√

3≈−0.5774 Hz, and fc =
√

5≈ 2.2361 Hz.

Example 6. A sinusoid is measured for 0≤ t ≤ T . Find the formula for its spec-
trum and then plot its line spectrum.

Solution. Applying Euler’s formula to the standard form of a sinusoid, we have

Acos(2π f0t +ϕ) = A
e j(2π f0t+ϕ)+ e− j(2π f0t+ϕ)

2
=

Ae jϕ

2
e j2π f0t +

Ae− jϕ

2
e j2π(− f0)t .

Using the technique of Example 3, the spectrum is

Ae jϕ

2
PT ( f − f0)+

Ae− jϕ

2
PT ( f + f0). (4)

The corresponding line spectrum is shown in Fig. 5.
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Figure 5. Line spectrum of the sinusoid Acos(2π f0t +ϕ).

If we denote the formula (4) by XT ( f ), it can be defined in MATLAB with the
statement

XT = @(f)A*exp(1j*phi)/2*PT(f-f0)+A*exp(-1j*phi)/2*PT(f+f0);

Hence, it is easy to plot the magnitude spectrum |XT ( f )| as shown in Figs. 6 and
7. By examining the graphs, we see that if the frequency f0 is large,c there are two
tallest peaks located at f = ± f0, corresponding to the two terms in Euler’s formula
for the cosine. We also see that the peaks do not interfere much with each other when
f0 is large, but when f0 is small, it can be hard to tell if there are two peaks or just
one large one.

c Here “large” is relative to the width of the central peak in sinc(T f ), whose width is 2/T .
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Figure 6. On the left, the waveform Acos(2π f0t +ϕ) is measured for 0≤ t ≤ T = 6 and different values
of the frequency f0; the amplitude and phase are fixed at A = 1 and ϕ = 0, respectively. On the right, the
corresponding magnitude spectra are shown.
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Figure 7. Same as Fig. 6 except that ϕ = π/3 and the frequencies are different.
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4. The Fourier Series

We remarked in a footnote of Example 3 that there is no loss of generality in as-
suming that a signal defined on a finite interval, e.g., Fig. 8, has the form ∑k xke j2π fkt .

0 T

Figure 8. A finite-duration waveform x(t) defined only for 0≤ t ≤ T .

This is a consequence of the fact that essentially all such waveforms that arise in
engineering practice have a Fourier series expansion

x(t) =
∞

∑
k=−∞

xke j2π(k/T )t , 0≤ t ≤ T, (5)

where

xk =
1
T

∫ T

0
x(t)e− j2π(k/T )t dt. (6)

The formula (5) is called the synthesis equation or the Fourier series expansion of
x(t). The formula (6) is called the analysis equation or the Fourier series coefficient
formula. Although x(t) is only defined for 0 ≤ t ≤ T , the series on the right in (5)
makes sense for all −∞ < t < ∞ and is periodic with period T as shown in Fig. 9.

0 T

Figure 9. The Fourier series expansion is defined for −∞ < t < ∞, but it is equal to x(t) in Fig. 8 only for
0≤ t ≤ T .

Observe that the analysis equation (6) says that the kth Fourier series coefficient
is equal to (1/T ) times the Fourier transform of x(t) on [0,T ] evaluated at f = k/T .
In other words, to within the scale factor of 1/T , the Fourier series coefficients are
samples of the Fourier transform (cf. italicized text at the end of Example 4).

Example 7. Consider the situations in Examples 4 and 5 in which three complex
exponentials of frequencies fa, fb, and fc are added together. The waveforms are
observed over 0≤ t ≤ T = 6, and their Fourier transforms are shown as the solid lines
in Fig. 10. In addition, circles are placed on the transforms at frequencies that are

10
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multiples of 1/T . In the first case, fa, fb, and fc are all multiples of 1/T . However,
in the second case, the frequencies are not harmonically related; i.e., it is not the case
that all of them are integer multiples of a common positive frequency.
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f (Hz)

Figure 10. Fourier transforms (solid lines) and their samples (circles) at frequencies that are multiples of
1/T with T = 6 as described in Example 7.

Example 8 (Derivation of the Analysis Equation). The reader should first review
the properties of PT ( f ) in the paragraph preceding Example 2, and then review Ex-
ample 3. Applying Example 3 to the synthesis equation (5) shows that∫ T

0
x(t)e− j2π f t dt =

∞

∑
k=−∞

xkPT ( f − k/T ).

Now fix an integer m and put f = m/T to get∫ T

0
x(t)e− j2π(m/T )t dt =

∞

∑
k=−∞

xkPT (m/T − k/T )

=
∞

∑
k=−∞

xkPT ((m− k)/T ).

11
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In the above sum, when k 6= m, we are evaluating PT at a nonzero integer multiple of
1/T , which means that PT ((m−k)/T ) = 0. Hence, there is only one nonzero term in
the sum, and that is the term with k = m. Since PT (0) = T ,∫ T

0
x(t)e− j2π(m/T )t dt = xm ·T.

Dividing both sides by T yields the analysis equation (with m instead of k).

5. Approximating the Spectrum Using Waveform Samples

If we sample a signal every ∆t seconds, we call fs := 1/∆t the sampling rate.
Recalling the definition of integral, we can approximate X( f ) by writing

X( f ) =
∫

∞

−∞

x(t)e− j2π f t dt ≈∑
n

x(n∆t)e− j2π f (n∆t)
∆t

=
1
fs

∑
n

x(n/ fs)e− j2π( f/ fs)n. (7)

Notice that since both f and fs have units of Hz, the quotient f/ fs has no units. If we
put

X̃( f̂ ) := ∑
n

x(n/ fs)e− j2π f̂ n, (8)

then the approximation in (7) becomes

X( f )≈ 1
fs

X̃( f/ fs). (9)

The variable f̂ is called digital frequency, and it has no units. Furthermore, the
formula for X̃( f̂ ) implies that it is a periodic function of f̂ with period one.d Hence,
we only need to evaluate X̃( f̂ ) over an interval of length one. We usually take this
interval to be−1/2≤ f̂ ≤ 1/2. This means that in (9), | f/ fs| ≤ 1/2, or | f | ≤ fs/2. In
other words, the best we can hope for is to approximate X( f ) for | f | ≤ fs/2. In order
for this to capture all the features of X( f ), we must have X( f ) = 0 for | f |> fs/2. In
practice, we will often know or be able to arrange that X( f ) = 0 for | f | greater than

d Observe that

X̃( f̂ +1) = ∑
n

x(n/ fs)e− j2π( f̂ +1)n = ∑
n

x(n/ fs)e− j2π f̂ n e− j2πn︸ ︷︷ ︸
=1

= ∑
n

x(n/ fs)e− j2π f̂ n = X̃( f̂ ).

12
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some cutoff frequency fcutoff.e If we then choose the sampling rate fs > 2 fcutoff, it
will be true that X( f ) = 0 for | f |> fs/2. The quantity 2 fcutoff is called the Nyquist
rate, and the Nyquist criterion says that we must sample faster than the Nyquist
rate; i.e., twice the cutoff frequency, in order to approximate X( f ).

Now suppose we are given only a finite number of samples, say x(n/ fs) for n =
0, . . . ,N−1. Put T := N/ fs and proceed as in (7) to get

∫ T

0
x(t)e− j2π f t dt ≈ 1

fs

N−1

∑
n=0

x(n/ fs)e− j2π f (n/ fs). (10)

This suggests that we put

X̃N( f̂ ) :=
N−1

∑
n=0

x(n/ fs)e− j2π f̂ n,

which has period one just like X̃( f̂ ) defined earlier. Hence, the right-hand side of
(10) has period fs. This is illustrated in Fig. 11, which plots the left- and right-hand
sides of (10) for the waveform described in Example 4.

Using the definition of X̃N( f̂ ), the approximation (10) becomes∫ T

0
x(t)e− j2π f t dt ≈ 1

fs
X̃N( f/ fs).

We now take frequency samples by setting f = k fs/N; i.e.,

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/N

≈ 1
fs

X̃N(k/N) =
1
fs

N−1

∑
n=0

x(n/ fs)e− j2πkn/N . (11)

The quantity

X [k] :=
N−1

∑
n=0

x(n/ fs)e− j2πkn/N (12)

is called the discrete Fourier transform (DFT).f Putting this all together, we have
the approximation

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/N

≈ 1
fs

X [k]. (13)

e In this case, we say that the signal is bandlimited and that its bandwidth is fcutoff.
f When we use the phrase “Fourier transform,” we mean the integral (1) (or (2) when x(t) is known only

for 0≤ t ≤ T ). To refer to (12), we always write “DFT.” Some authors refer to (1) as the continuous-time
Fourier transform (CTFT), and they refer to (8) as the discrete-time Fourier transform (DTFT).
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Figure 11. The top graph shows the magnitude of the left-hand side of (10), and the bottom graph shows
the magnitude of the right-hand side of (10) for the waveform described in Example 4. To compute the
right-hand side of (10), fs = 6 and N = 36.

Note that because we put T = N/ fs, the frequencies k fs/N = k/T are the frequencies
corresponding the the Fourier series coefficients xk. This is illustrated in Fig. 12 for
the situations in Examples 4 and 5. Notice that the top graph in Fig. 12 appears to be
identical with the top graph in Fig. 10, while this is not true of the bottom graph. The
equality of the top graphs is explained in Section 7.

Example 9. An FMRI waveform is sampled at rate fs = 4 Hz, and N = 122 sam-
ples are recorded. The magnitude DFT values,

∣∣X [k]
∣∣, are plotted over the appropriate

frequencies in the range | f | ≤ fs/2 = 2 as shown in Fig. 13. What conclusions would
you draw?

5.1. Zero Padding

In some cases, the number of waveform samples N may be small, and this means
that the frequency spacing of fs/N in (13) will be large (e.g., Fig. 12). To get around

14
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Figure 12. Magnitude spectra (solid lines) and DFT approximations (circles) from Examples 4 and 5. Here
fs = 6 and N = 36.
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Figure 13. Magnitude DFT of FMRI data from Example 9 with fs = 4 and N = 122.
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Figure 14. The top and bottom graphs show Fig. 12 redone with zero padding to K = 64.

this, we can choose a new length K > N and put x(n/ fs) := 0 for n = N, . . . ,K−1.g

The DFT of this longer sequence is

K−1

∑
n=0

x(n/ fs)e− j2πkn/K =
N−1

∑
n=0

x(n/ fs)e− j2πkn/K .

Comparing this with the right-hand side of (11), we see that∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/K

≈ 1
fs

X̃N(k/K) =
1
fs

N−1

∑
n=0

x(n/ fs)e− j2πkn/K .

In other words, zero padding provides a denser sampling of spectrum. For example,
Fig. 12 is redone with K = 64 in Fig. 14 and with K = 128 in Fig. 15.

There are several reasons for zero padding:

• To reduce frequency spacing.
• To see the “ripples” in the continuous spectrum that are missing, for example,

if you simply connect the circles in Fig. 12 with straight lines; compare Fig. 15.
g Remember, we only measured N samples of x(t), we do not have access to the actual values of x(t)

any other values of t.
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Figure 15. The top and bottom graphs show Fig. 12 redone with zero padding to K = 128.

• Since the FFT algorithm is most efficient when the length of the input is a
power of two, it is common to zero pad to a power of two.
• Zero padding is essential for fast convolution, which we do not discuss here.

6. Some Messy Details about Using the DFT

Comparing (12) and (11) shows that X̃N(k/N) = X [k]. Since X̃N( f̂ ) has period
one, X [k] has period N.h Hence, the restriction −1/2 ≤ f̂ ≤ 1/2 corresponds to the
restriction−1/2≤ k/N ≤ 1/2, or−N/2≤ k≤ N/2. However, this range of k covers
N +1 integers, and we only want one full period of integers, so we agree to use only
−N/2 ≤ k ≤ N/2− 1. The first challenge is that computer programs, such as ffti

in MATLAB, return the vector of numbersj[
X [0], . . . ,X [N/2−1],X [N/2], . . . ,X [N−1]

]
h To see this, write X [k+N] = X̃N((k+N)/N) = X̃N(k/N +1) = X̃N(k/N) = X [k].
i The fast Fourier transform (FFT) is a clever algorithm for computing the DFT very quickly.
j We treat the case of even N here, but the MATLAB commands we give also handle the case of odd N.
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rather than [
X [−N/2], . . . ,X [−1],X [0], . . . ,X [N/2−1]

]
. (14)

However, since X [k] has period N, the second half of the vector computed by MAT-
LAB is equal to the first half of the vector we actually want. The MATLAB function
fftshift will do the required rearrangement for us; i.e., if x is the vector of sam-
ples x(n/ fs) for n = 0, . . . ,N−1, then the MATLAB statement

X = fftshift(fft(x));

puts the numbers in (14) into the vector X. Even when N is odd, MATLAB does
the right thing. To plot abs(X)/fs with the appropriate Hertz frequencies on the
horizontal axis, use

kvec0 = 0:N-1;
kvec = kvec0 - floor(N/2);
fhatvec = kvec/N;
fvec = fhatvec*fs;
plot(fvec,abs(X)/fs,’k’)

To do zero padding to length Nzp, use

X = fftshift(fft(x,Nzp));

7. Understanding the Approximation (10)

To better understand the approximation in (10), we consider special cases in
which both sides can be computed in closed form. To do this, we first need the
following discrete analog of Example 1.

Example 10. Show that

P̃N( f̂ ) :=
N−1

∑
n=0

e− j2π f̂ n = e− jπ(N−1) f̂ ·N · sinc(N f̂ )

sinc( f̂ )
, (15)

whenever f̂ is not an integer; for integers k, |P̃N(k)|= N. Furthermore, if k/N is not
an integer, then P̃N(k/N) = 0.

Solution. For noninteger f̂ , use the geometric series to write

P̃( f̂ ) :=
N−1

∑
n=0

e− j2π f̂ n =
N−1

∑
n=0

(
e− j2π f̂ )n

=
1− e− j2π f̂ N

1− e− j2π f̂
.
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Proceeding as in Example1, we have

P̃N( f̂ ) =
e− jπN f̂

e− jπ f̂
· e

jπN f̂ − e− jπN f̂

e jπ f̂ − e− jπ f̂
= e− jπ(N−1) f̂ · sin(πN f̂ )

sin(π f̂ )

= e− jπ(N−1) f̂ ·N · sin(πN f̂ )

sin(π f̂ )
· π f̂

πN f̂

= e− jπ(N−1) f̂ ·N · sinc(N f̂ )

sinc( f̂ )
.

The graph of |P̃N( f̂ )|= N|sinc(N f̂ )/sinc( f̂ )| for N = 10 is shown in Fig. 16.

−1.5 −1 −0.5 0 0.5 1 1.5
0

5

10

Figure 16. Graph of |P̃N( f̂ )|= N|sinc(N f̂ )/sinc( f̂ )| for N = 10.

If we put f̂ = f/ fs in (15) and take T := N/ fs as in the paragraph following (10),
we obtain

1
fs

P̃N( f/ fs) =
1
fs

e− jπ(N−1) f/ fs ·N · sinc(N f/ fs)

sinc( f/ fs)

=
e jπ f/ fs

sinc( f/ fs)
· e− jπT f ·T · sinc(T f )

=
e jπ f/ fs

sinc( f/ fs)
·PT ( f ). (16)

Since we intend to keep | f | ≤ fs/2 (equivalently, | f/ fs| ≤ 1/2), it is instructive to
plot sinc( f̂ ) for | f̂ | ≤ 1/2 as shown in Fig. 17. We see that for f̂ in this range,
0.63 ≤ sinc( f̂ ) ≤ 1; and from the formula, the phase factor e jπ f/ fs has an angle
whose absolute value is at most π/2.

We now turn to the discrete analog of Example 3.
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Figure 17. Graph of sinc( f̂ ).

Example 11. If
x(t) := ∑

k
xke j2π fkt

is measured at sampling times n/ fs for n = 0, . . . ,N−1, show that the DTFT is

N−1

∑
n=0

x(n/ fs)e− j2π f̂ n = ∑
k

xkP̃N( f̂ − fk/ fs). (17)

Solution. Write
N−1

∑
n=0

x(n/ fs)e− j2π f̂ n =
N−1

∑
n=0

(
∑
k

xke j2π fk(n/ fs)
)

e− j2π f̂ n

= ∑
k

xk

(N−1

∑
n=0

e− j2π( f̂ − fk/ fs)n
)

= ∑
k

xkP̃N( f̂ − fk/ fs),

where the last step follows from (15) with f̂ replaced by f̂ − fk/ fs.

We now substitute (17), with f̂ replaced by f/ fs, into the right-hand side of (10)
to get ∫ T

0
x(t)e− j2π f t dt ≈ 1

fs
∑
k

xkP̃N(( f − fk)/ fs)

= ∑
k

xk
e jπ( f− fk)/ fs

sinc(( f − fk)/ fs)
PT ( f − fk), by (16), (18)

which contrasts nicely with the exact formula in Example 3. However, keep in mind
that the right-hand side is periodic in f with period fs (since P̃N(·) has period one).
This was illustrated earlier in Fig. 11.
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7.1. When the Approximation is Exact and the Sampling Theorem

We continue with x(t) as in Example 11. Suppose that for some frequency f0,
each fk has the form fk = k f0 and that fs = N f0. Then T := N/ fs = 1/ f0. If for some
i we take f = i f0, then (18) becomes∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=i f0

≈∑
k

xk
e jπ(i−k)/N

sinc((i− k)/N)
PT ((i− k)/T )

= xi ·PT (0) = xi ·T,

where we recall that PT ((i−k)/T ) = 0 for k 6= i and PT (0) = T . Furthermore, by the
analysis equation (6), the left-hand side is also equal to xiT . Hence, for f = i f0, the
above approximation is actually exact; i.e.,

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=i f0=i/T

=
1
fs

N−1

∑
n=0

x(n/ fs)e− j2π f̂ n
∣∣∣∣

f̂ =i f0/ fs=i/N
. (19)

Keep in mind that the above sum as a function of f̂ has period one and so we must
have | f̂ | ≤ 1/2. Equivalently, we must have |i f0/ fs| ≤ 1/2, or | fi| = |i f0| ≤ fs/2.
In other words, we need to have chosen fs = N f0 > 2max{| fi|}. Putting this all
together, we have the following result.

The Sampling Theorem for Periodic Signals. Let

x(t) :=
M

∑
m=−M

xme j2πm f0t . (20)

Choose any integer N > 2M and put fs = N f0.k Then from knowledge of the samples
x(n/ fs) for n = 0, . . . ,N−1, we can recover x(t) for all t.

Proof. Since (19) holds for i = −M, . . . ,M, we can use the waveform sam-
ples x(n/ fs) to compute the Fourier series coefficient integral on the left to obtain
x−M, . . . ,xM . Once these are know, we can compute x(t) for any t using (20).

Since f0/ fs = 1/N, we can rewrite (19) as∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=i f0=i/T

=
1
fs

X [i].

In other words, the DFT exactly computes the Fourier series coefficients under the
conditions of the sampling theorem.

k Note that fs = N f0 > 2M f0, which is the Nyquist rate.
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Remark. To see what happens when x(t) in (20) is observed over L periods, write

x(t) =
M

∑
m=−M

xme j2π(mL)( f0/L)t .

Put x̌k = xm when k = mL for some m =−M, . . . ,M, and put x̌k = 0 otherwise. Then

x(t) =
ML

∑
k=−ML

x̌ke j2πk( f0/L)t .

Take N > 2ML and put fs = N( f0/L) > 2M f0, which is the Nyquist rate. Then
T := N/ fs = L/ f0, and (19) becomes

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=i( f0/L)=i/T

=
1
fs

N−1

∑
n=0

x(n/ fs)e− j2π f̂ n
∣∣∣∣

f̂ =i( f0/L)/ fs=i/N
.

Both sides are equal to x̌i, which is zero unless i = mL for some m =−M, . . . ,M.
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