
FrequencyAnalysisShort.tex 3/8/2017, 5/25/2017, June 1, 2017

Introduction to Frequency Analysis and the DFT
(Short Version)

John A. Gubner
Department of Electrical and Computer Engineering

University of Wisconsin–Madison

Contents

1 Introduction 2
2 The Fourier Transform 2
3 The Sinc Function and the Rectangular Window 4
4 The Effect of Rectangular Windowing 6
5 Approximating the Spectrum Using Waveform Samples 8

5.1 Zero Padding 10
6 Some Messy Details about Using the DFT 11
References 12
Index 13

Abstract

The continuous-time Fourier transform is defined. It is shown that windowing
has the effect of blurring the transform. Then sampling is introduced as a way to
approximate the transform integral. The resulting approximation is seen to be pe-
riodic. Windowing and sampling are then combined to obtain the discrete Fourier
transform (DFT). MATLAB code for plotting the fast Fourier transform (FFT) on the
appropriate frequency axis is provided.

It is assumed that the reader is familiar with Euler’s formulas

e jθ = cosθ + jθ , cosθ =
e jθ + e− jθ

2
, and sinθ =

e jθ − e− jθ

2 j
,

and the continuous-time unit impulse (Dirac impulse) δ (t). The reader should also be
familiar with convolution and the sifting property of the impulse, as well as the fact
that the transform of a product is the convolution of the corresponding transforms.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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1. Introduction

The goal of frequency analysis is to process a signal x(t) and determine what
frequencies are present. For example, the standard form of a sinusoid is

x(t) = Acos(2π f0t +ϕ),

where A > 0 is the amplitude, f0 is the frequency, measured in units of inverse
seconds or Hertz (Hz), and ϕ is the phase, measured in radians. In this case, without
knowing the formula for x(t), and using only the values of x(t), the goal of frequency
analysis is to determine the values of A, f0, and ϕ . Usually we only worry about
A and f0, since ϕ is only unique up to additive multiples of 2π . To add a bit more
generality, suppose

x(t) =
K

∑
k=1

Ak cos(2π fkt +ϕk).

We would like to use frequency analysis to tell us the number of terms K, the weights
Ak and the corresponding frequencies fk.

Our initial tool will be the continuous-time Fourier transform (CTFT) (or just
FT when there is no ambiguity), which depends on the values of the waveform x(t)
for all times t.

Our first problem is that even if the waveform x(t) is defined for all −∞ < t < ∞,
we can only observe it for t in a finite time window of duration T , such as [0,T ] or
[−T/2,T/2]. This leads us to study the effect of windowing. The main effect of
windowing is to blur the original spectrum (sometimes known as spectral leakage).

The second problem we consider is that of approximating the transform integral
using values of x(t) only for discrete values of t, say t = n∆t for integers n with
−∞ < n < ∞ and some small time separation ∆t. This leads us to study the effect of
sampling, and introduces us to the discrete-time Fourier transform (DTFT). The
main effect of sampling is to introduce periodicity into the tranform approximation.

To conclude our discussion, we combine windowing and sampling, which leads
us to the discrete Fourier transform (DFT). This tool necessarily imposes both
blurring (spectral leakage) and periodicity on the original CTFT.

2. The Fourier Transform

The continuous-time Fourier transform (CTFT), or spectrum, of a waveform
x(t) is defined by

X( f ) :=
∫

∞

−∞

x(t)e− j2π f t dt,
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and the inverse Fourier transform is given by

x(t) =
∫

∞

−∞

X( f )e j2π f t d f .

For example, the inverse transform of X( f ) = δ ( f − f0) is easily computed to be∫
∞

−∞

δ ( f − f0)e j2π f t d f = e j2π f0t .

We denote the fact that the time function e j2π f0t and the frequency function δ ( f − f0)
are transform pairs by writing

e j2π f0t FT←→ δ ( f − f0). (1)

This spectrum is graphed in Figure 1.

0
f (Hz)

f0

1

Figure 1. Spectrum of the complex exponential waveform e j2π f0t .

By Euler’s formula,

cos(2π f0t) = 1
2 e j2π f0t + 1

2 e j2π(− f0)t .

By linearity of the transform integral, it follows that

cos(2π f0t) FT←→ 1
2 δ ( f − f0)+

1
2 δ ( f + f0).

This spectrum is graphed in Figure 2.
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Figure 2. Spectrum of the sinusoid cos(2π f0t).
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More generally, writing

Acos(2π f0t +ϕ) = A
2 e jϕ e j2π f0t + A

2 e− jϕ e j2π(− f0)t ,

it follows that

Acos(2π f0t +ϕ)
FT←→ A

2 e jϕ
δ ( f − f0)+

A
2 e− jϕ

δ ( f + f0).

This spectrum is graphed in Figure 3.
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Figure 3. Spectrum of the sinusoid Acos(2π f0t +ϕ).

In practice, we never observe x(t) for all −∞ < t < ∞. We typically have x(t)
only for t in a finite time interval of duration T , say [0,T ] or [−T/2,T/2].

3. The Sinc Function and the Rectangular Window

The sinc function is essential to understand windowing. This function is defined
by

sinc(θ) :=


sin(πθ)

πθ
, θ 6= 0,

1, θ = 0,

and is plotted in Figure 4. The reason for including the factor of π is to make the zero
crossings occur when θ is a nonzero integer. Another important feature of sinc(θ) is
that the tallest peak, called the main lobe, occurs at θ = 0, has height 1, and width
2.a The remaining peaks and valleys are called sidelobes.

Consider the symmetric rectangular window

rT (t) :=

{
1, |t| ≤ T/2,

0, |t|> T/2,

which is graphed at the top in Figure 5.
a The width of a peak is measured between the zeros on either side. The tallest peak in Figure 4 sits

between the zeros at θ =±1, so the width is (+1)− (−1) = 2.
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Figure 4. The function sinc(θ).

Example 1. Verify the transform pair

rT (t)
FT←→ RT ( f ) := T sinc(T f ),

which is illustrated in Figure 5.

  0   

0

 

1

T/2−T/2

     0      

0

 

 

1/T−1/T

T

Figure 5. Symmetric rectangular window rT (t) (top) and its spectrum T sinc(T f ) (bottom).
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Solution. We compute∫
∞

−∞

rT (t)e− j2π f t dt =
∫ T/2

−T/2
e− j2π f t dt =

e− j2π f t

− j2π f

∣∣∣∣t=T/2

t=−T/2
=

e jπT f − e− jπT f

2 jπ f

=
1

π f
· e

jπT f − e− jπT f

2 j

= T
sin(πT f )

πT f
= T sinc(T f ).

4. The Effect of Rectangular Windowing

Consider a linear combination of complex exponentials, say

x(t) = ae j2π fat +be j2π fbt + ce j2π fct . (2)

Taking the transform term by term, and using (1), we have

X( f ) = aδ ( f − fa)+bδ ( f − fb)+ cδ ( f − fc),

which is illustrated in Figure 6. As long as the three frequencies fa, fb, and fc are

f (Hz)

b
a

c

fb 0fa fc

Figure 6. Spectrum of x(t) in (2).

distinct, we can see distinct impulses, no matter how close the frequencies are to each
other, and no matter what the relative strengths of a, b, and c are.

Now suppose we can only observe (2) for t ∈ [−T/2,T/2] and compute

XT ( f ) :=
∫ T/2

−T/2
x(t)e− j2π f t dt.

To understand what is going on, recall that rT (t) = 1 for−T/2≤ t ≤ T/2 and rT (t) =
0 otherwise. Hence, we can write

XT ( f ) =
∫

∞

−∞

x(t)rT (t)e− j2π f t dt.

6



FrequencyAnalysisShort.tex 3/8/2017, 5/25/2017, June 1, 2017

In other words, XT ( f ) is the transform of the product of the infinite-duration signal
x(t) and the finite-duration window function rT (t). We now use the transform prop-
erty saying that the transform of a product is the convolution of the corresponding
transforms,

x(t)y(t) FT←→ (X ∗Y )( f ) :=
∫

∞

−∞

X(ν)Y ( f −ν)dν .

Applying this result means we have to compute

XT ( f ) =
∫

∞

−∞

X(ν)RT ( f −ν)dν

=
∫

∞

−∞

[
aδ (ν− fa)+bδ (ν− fb)+ cδ (ν− fc)

]
RT ( f −ν)dν .

Now break up the integral into three separate integrals, and use the sifting property
to evaluate each one. We find that

XT ( f ) = aRT ( f − fa)+bRT ( f − fb)+ cRT ( f − fc),

which is illustrated in Figure 7. We infer from Figure 7 that fa = −1.5 Hz, fb =

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

Figure 7. Absolute value of the spectrum of x(t)rT (t). Compare with the spectrum of x(t) itself in Figure 6.

−0.5 Hz, and fc = 2 Hz. Since the zero crossings of RT ( f ) occur at multiples of
1/T , and we see that there are six crossing in [0,1), we conclude that T = 6. Next, to
determine the weights a, b, and c, we use the fact that the maximum value of RT ( f )
is T ; hence, the three largest peaks in the graph have heights aT = 3, bT = 2, and
cT = 5. Equivalently, a = 3/6 = 1/2, b = 2/6 = 1/3, and c = 5/6.

When we compare Figures 6 and 7, we see that each impulse is blurred or “leaks”
into nearby frequencies. In other words, windowing leads to spectral leakage.

To give another example of the effect of windowing and spectral leakage, consider
the ideal lowpass filter H( f ) := 1 for | f | ≤ fc and H( f ) := 0 otherwise. Taking the
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inverse Fourier transform (following the method of Example 1) shows that h(t) =
2 fc sinc(2 fct). In Figure 8, we compare the transform H( f ) (dashed line) with the
windowed approximation ∫ T/2

−T/2
h(t)e− j2π f t dt (3)

(solid line), which is computed using numerical integration.

     

0

1

-f
c 0 f

c

Figure 8. Ideal lowpass filter (dashed line) and its approximation using the windowed Fourier transform
(3) (solid line).

5. Approximating the Spectrum Using Waveform Samples

If we sample a signal every ∆t seconds, we call fs := 1/∆t the sampling rate.
Recalling the definition of integral, we can approximate X( f ) by writing

X( f ) =
∫

∞

−∞

x(t)e− j2π f t dt ≈∑
n

x(n∆t)e− j2π f (n∆t)
∆t

=
1
fs

∑
n

x(n/ fs)e− j2π( f/ fs)n. (4)

Notice that since both f and fs have units of Hz, the quotient f/ fs has no units. If we
put

X̃( f̂ ) := ∑
n

x(n/ fs)e− j2π f̂ n, (5)

then the approximation in (4) becomes

X( f )≈ 1
fs

X̃( f/ fs). (6)
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The variable f̂ is called digital frequency, and it has no units. Furthermore, the
formula for X̃( f̂ ) implies that it is a periodic function of f̂ with period one.b Hence,
we only need to evaluate X̃( f̂ ) over a frequency interval of length one. We usually
take this interval to be −1/2 ≤ f̂ ≤ 1/2. This means that in (6), | f/ fs| ≤ 1/2,
or | f | ≤ fs/2. In other words, the best we can hope for is to approximate X( f ) for
| f | ≤ fs/2. In order for this to capture all the features of X( f ), we must have X( f )= 0
for | f | > fs/2. In practice, we will often know or be able to arrange that X( f ) = 0
for | f | greater than some cutoff frequency fcutoff.c If we then choose the sampling
rate fs > 2 fcutoff, it will be true that X( f ) = 0 for | f |> fs/2. The quantity 2 fcutoff is
called the Nyquist rate, and the Nyquist criterion says that we must sample faster
than the Nyquist rate; i.e., twice the cutoff frequency, in order to approximate X( f ).

Now suppose we are given only a finite number of samples, say x(n/ fs) for n =
0, . . . ,N−1. Put T := N/ fs and proceed as in (4) to get

∫ T

0
x(t)e− j2π f t dt ≈ 1

fs

N−1

∑
n=0

x(n/ fs)e− j2π f (n/ fs). (7)

This suggests that we put

X̃N( f̂ ) :=
N−1

∑
n=0

x(n/ fs)e− j2π f̂ n,

which has period one just like X̃( f̂ ) defined earlier. Hence, the right-hand side of
(7) has period fs. This is illustrated in Figure 9, which plots the left- and right-hand
sides of (7) for the waveform discussed in Section 4.

Using the definition of X̃N( f̂ ), the approximation (7) becomes∫ T

0
x(t)e− j2π f t dt ≈ 1

fs
X̃N( f/ fs).

We now take frequency samples by setting f = k fs/N; i.e.,

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/N

≈ 1
fs

X̃N(k/N) =
1
fs

N−1

∑
n=0

x(n/ fs)e− j2πkn/N . (8)

b Observe that

X̃( f̂ +1) = ∑
n

x(n/ fs)e− j2π( f̂ +1)n = ∑
n

x(n/ fs)e− j2π f̂ n e− j2πn︸ ︷︷ ︸
=1

= ∑
n

x(n/ fs)e− j2π f̂ n = X̃( f̂ ).

c In this case, we say that the signal is bandlimited and that its bandwidth is fcutoff.
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Figure 9. The top graph shows the magnitude of the left-hand side of (7), and the bottom graph shows
the magnitude of the right-hand side of (7) for the waveform discussed in Section 4. To compute the
right-hand side of (7), fs = 6 and N = 36.

The quantity

X [k] :=
N−1

∑
n=0

x(n/ fs)e− j2πkn/N (9)

is called the discrete Fourier transform (DFT). Putting this all together, we have
the approximation ∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/N

≈ 1
fs

X [k]. (10)

Example 2. An FMRI waveform is sampled at rate fs = 4 Hz, and N = 122 sam-
ples are recorded. The magnitude DFT values,

∣∣X [k]
∣∣, are plotted over the appropri-

ate frequencies in the range | f | ≤ fs/2 = 2 as shown in Figure 10. What conclusions
would you draw?

5.1. Zero Padding

In some cases, the number of waveform samples N may be small, and this means
that the frequency spacing of fs/N in (10) will be large. To get around this, we can

10
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Figure 10. Magnitude DFT of FMRI data from Example 2 with fs = 4 and N = 122.

choose a new length K > N and put x(n/ fs) := 0 for n = N, . . . ,K−1.d The DFT of
this longer sequence is

K−1

∑
n=0

x(n/ fs)e− j2πkn/K =
N−1

∑
n=0

x(n/ fs)e− j2πkn/K .

Comparing this with the right-hand side of (8), we see that

∫ T

0
x(t)e− j2π f t dt

∣∣∣∣
f=k fs/K

≈ 1
fs

X̃N(k/K) =
1
fs

N−1

∑
n=0

x(n/ fs)e− j2πkn/K .

In other words, zero padding provides a denser sampling of spectrum.
There are several reasons for zero padding:

• To reduce frequency spacing.
• Since the FFT algorithm is most efficient when the length of the input is a

power of two, it is common to zero pad to a power of two.
• Zero padding is essential for fast convolution, which we do not discuss here.

6. Some Messy Details about Using the DFT

Comparing (9) and (8) shows that X̃N(k/N) = X [k]. Since X̃N( f̂ ) has period
one, X [k] has period N.e Hence, the restriction −1/2 ≤ f̂ ≤ 1/2 corresponds to the
restriction−1/2≤ k/N ≤ 1/2, or−N/2≤ k≤ N/2. However, this range of k covers
N +1 integers, and we only want one full period of integers, so we agree to use only

d Remember, we only measured N samples of x(t), we do not have access to the actual values of x(t)
any other values of t.

e To see this, write X [k+N] = X̃N((k+N)/N) = X̃N(k/N +1) = X̃N(k/N) = X [k].
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−N/2 ≤ k ≤ N/2− 1. The first challenge is that computer programs, such as fftf

in MATLAB, return the vector of numbersg[
X [0], . . . ,X [N/2−1],X [N/2], . . . ,X [N−1]

]
rather than [

X [−N/2], . . . ,X [−1],X [0], . . . ,X [N/2−1]
]
. (11)

However, since X [k] has period N, the second half of the vector computed by MAT-
LAB is equal to the first half of the vector we actually want. The MATLAB function
fftshift will do the required rearrangement for us; i.e., if x is the vector of sam-
ples x(n/ fs) for n = 0, . . . ,N−1, then the MATLAB statement

X = fftshift(fft(x));

puts the numbers in (11) into the vector X. Even when N is odd, MATLAB does
the right thing. To plot abs(X)/fs with the appropriate Hertz frequencies on the
horizontal axis, use

kvec0 = 0:N-1;
kvec = kvec0 - floor(N/2);
fhatvec = kvec/N;
fvec = fhatvec*fs;
plot(fvec,abs(X)/fs,’k’)

To do zero padding to length Nzp, use

X = fftshift(fft(x,Nzp));
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