Hoeffding's Inequality

John A. Gubner
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

1. Preliminaries

1.1. Variance Bound

If X is a bounded random variable with $a \leq X \leq b$, where $-\infty<a \leq b<\infty$, we derive the well-known result

$$
\operatorname{var}(X) \leq \frac{(b-a)^{2}}{4}
$$

using the approach of [2]. Recall that

$$
\operatorname{var}(X)=\min _{c \in \mathbb{R}} \mathrm{E}\left[(X-c)^{2}\right]
$$

is achieved when $c=\mathrm{E}[X]$. So in particular, if we take c as the midpoint between a and b; i.e., $(a+b) / 2$, we have

$$
\operatorname{var}(X) \leq \mathrm{E}\left[\left(X-\frac{a+b}{2}\right)^{2}\right]
$$

The maximum possible distance between X and the midpoint occurs when X is at either end of the interval $[a, b]$. Hence,

$$
\operatorname{var}(X) \leq \mathrm{E}\left[\left(X-\frac{a+b}{2}\right)^{2}\right] \leq\left(b-\frac{a+b}{2}\right)^{2}=\left(\frac{b-a}{2}\right)^{2}=\frac{(b-a)^{2}}{4}
$$

1.2. Moment Generating Functions

For real s, let $M(s):=\mathrm{E}\left[e^{s X}\right]$ denote the moment generating function of X. Recall that $M^{\prime}(s)=\mathrm{E}\left[X e^{s X}\right]$ and $M^{\prime \prime}(s)=\mathrm{E}\left[X^{2} e^{s X}\right.$] [1] pp. 278-279]. Clearly, $M(0)=1$, and $M^{\prime}(0)=\mathrm{E}[X]$. The cumulant generating function is $\psi(s):=\ln M(s)$, and it satisfies

$$
\psi^{\prime}(s)=\frac{M^{\prime}(s)}{M(s)} \quad \text { and } \quad \psi^{\prime \prime}(s)=\frac{M(s) M^{\prime \prime}(s)-M^{\prime}(s)^{2}}{M(s)^{2}}=\frac{M^{\prime \prime}(s)}{M(s)}-\left[\frac{M^{\prime}(s)}{M(s)}\right]^{2}
$$

Note that $\psi(0)=0$. Using the formulas for $M^{\prime}(s)$ and $M^{\prime \prime}(s)$, we can write

$$
\begin{equation*}
\psi^{\prime \prime}(s)=\mathrm{E}\left[X^{2} \frac{e^{s X}}{M(s)}\right]-\left(\mathrm{E}\left[X \frac{e^{s X}}{M(s)}\right]\right)^{2} \tag{1}
\end{equation*}
$$

As in [3] we define a family of probability measures on subsets A of the sample space by

$$
\mathrm{P}_{s}(A):=\mathrm{E}\left[\mathbf{1}_{A} L_{s}(X)\right],
$$

where $L_{s}(X):=e^{s X} / M(s){ }^{a}$ In other words, the expectation of any random variable Z under P_{s} is computed via

$$
\mathrm{E}_{s}[Z]=\mathrm{E}\left[Z L_{s}(X)\right] .
$$

Then (1) says that

$$
\begin{equation*}
\psi^{\prime \prime}(s)=\mathrm{E}_{s}\left[X^{2}\right]-\left(\mathrm{E}_{s}[X]\right)^{2}=\operatorname{var}_{s}(X) \leq(b-a)^{2} / 4 . \tag{2}
\end{equation*}
$$

2. Hoeffding's Lemma

Let X be a bounded random variable with $a \leq X \leq b$, where $-\infty<a \leq b<\infty$, and put $\mu:=\mathrm{E}[X]$. Then Hoeffding's Lemma says that

$$
\mathrm{E}\left[e^{s(X-\mu)}\right] \leq e^{s^{2}(b-a)^{2} / 8}
$$

To derive it, rewrite it as $\mathrm{E}\left[e^{s X}\right] \leq e^{\mu s} e^{s^{2}(b-a)^{2} / 8}$ and take the logarithm to get

$$
\begin{equation*}
\psi(s) \leq \mu s+s^{2}(b-a)^{2} / 8 \tag{3}
\end{equation*}
$$

By Taylor's Theorem with remainder [4, Th. 5.15],

$$
\psi(s)=\psi(0)+\psi^{\prime}(0) s+\psi^{\prime \prime}(\hat{s}) s^{2} / 2
$$

where \hat{s} lies between 0 and s. By (2), we have $\psi^{\prime \prime}(\hat{s}) \leq(b-a)^{2} / 4$, and since $\psi(0)=0$ and $\psi^{\prime}(0)=\mu$, the inequality (3) follows.

3. Hoeffding's Inequalities

Let X_{1}, \ldots, X_{n} be independent bounded random variables with $a_{i} \leq X_{i} \leq b_{i}$. Put

$$
S_{n}:=\sum_{i=1}^{n} X_{i}, \quad s_{n}:=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right], \quad \text { and } \quad \Delta_{n}:=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} .
$$

Then Hoeffding's inequalities are

$$
\begin{equation*}
\mathrm{P}\left(S_{n}-s_{n}>t\right) \leq e^{-2 t^{2} / \Delta_{n}} \quad \text { and } \quad \mathrm{P}\left(\left|S_{n}-s_{n}\right|>t\right) \leq 2 e^{-2 t^{2} / \Delta_{n}} \tag{4}
\end{equation*}
$$

${ }^{a}$ The measure P_{s} is said to be exponentially tilted [5].

If the X_{i} are identically distributed with common bounds $a \leq X_{i} \leq b$ and common means μ, then Hoeffding's inequalities imply the simplified relations

$$
\mathrm{P}\left(\frac{S_{n}}{n}-\mu>t\right) \leq e^{-2 n t^{2} /(b-a)^{2}} \quad \text { and } \quad \mathrm{P}\left(\left|\frac{S_{n}}{n}-\mu\right|>t\right) \leq 2 e^{-2 n t^{2} /(b-a)^{2}}
$$

To derive the left-hand inequality in (4), observe that for any $\theta>0$, we can write

$$
\begin{array}{rlrl}
\mathrm{P}\left(S_{n}-s_{n}>t\right) & =\mathrm{P}\left(\theta\left(S_{n}-s_{n}\right)>\theta t\right) & \\
& =\mathrm{P}\left(e^{\theta\left(S_{n}-s_{n}\right)}>e^{\theta t}\right) & & \\
& \leq \frac{\mathrm{E}\left[e^{\theta\left(S_{n}-S_{n}\right)}\right]}{e^{\theta t}}, & & \text { by Markov's inequality, } \\
& =e^{-\theta t} \prod_{i=1}^{n} \mathrm{E}\left[e^{\theta\left(X_{i}-\mathrm{E}\left[X_{i}\right]\right)}\right], & & \text { by independence, } \\
& \leq e^{-\theta t} \prod_{i=1}^{n} e^{\theta^{2}\left(b_{i}-a_{i}\right)^{2} / 8}, & & \text { by Hoeffding's Lemma, } \\
& =e^{-\theta t} e^{\theta^{2} \Delta_{n} / 8} & & \\
& =\exp \left[\theta^{2} \Delta_{n} / 8-\theta t\right] . &
\end{array}
$$

To minimize the bound as a function of θ, we minimize the argument of exp, which is a quadratic. Setting the derivative of the quadratic to zero shows that the optimal value of θ is $4 t / \Delta_{n}$. Substituting this into the above inequality yields the desired result.

A similar analysis shows that $\mathrm{P}\left(S_{n}-s_{n}<-t\right) \leq e^{-2 t^{2} / \Delta_{n}}$, and then

$$
\begin{aligned}
\mathrm{P}\left(\left|S_{n}-s_{n}\right|>t\right) & =\mathrm{P}\left(\left\{S_{n}-s_{n}>t\right\} \cup\left\{S_{n}-s_{n}<-t\right\}\right) \\
& \leq \mathrm{P}\left(S_{n}-s_{n}>t\right)+\mathrm{P}\left(S_{n}-s_{n}<-t\right) \\
& \leq 2 e^{-2 t^{2} / \Delta_{n}}
\end{aligned}
$$

References

[1] P. Billingsley, Probability and Measure, 3rd ed. New York: Wiley, 1995.
[2] JBD (https://stats.stackexchange.com/users/339110/jbd), "Understanding proof of a lemma used in Hoeffding inequality," [Online]. Available: https://stats. stackexchange.com/q/550105 accessed Nov. 23, 2023.
[3] pSrIoGcNeAsLs (https://stats.stackexchange.com/users/302748/ psriogcneasls, "Understanding proof of a lemma used in Hoeffding inequality," [Online]. Available: https://stats.stackexchange.com/q/585079 accessed Nov. 23, 2023.
[4] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.
[5] Wikipedia Contributors, "Exponential tilting — Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Exponential_tilting\& oldid=1175268151 accessed Nov. 24, 2023.

