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Abstract

A simple proof of the intermediate-value theorem is given. As an easy corollary,
we establish the existence of =th roots of positive numbers. It is assumed that the
reader is familiar with the following facts and concepts from analysis:

• Let � be a nonempty set of real numbers bounded above. Then � has a least
upper bound G0 [1].

• A function 5 is continuous at G0 if given any Y > 0, there is a X > 0 such that
for all G with |G − G0 | < X, | 5 (G) − 5 (G0) | < Y. This last inequality can be
rewritten as

−Y < 5 (G) − 5 (G0) < Y

or, by multiplying through by −1,

−Y < 5 (G0) − 5 (G) < Y,

from which we get

−Y + 5 (G) < 5 (G0) < 5 (G) + Y.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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The Intermediate-Value Theorem. Let 5 be a real-valued, continuous function
defined on a finite interval [0, 1]. Then 5 takes all values between 5 (0) and 5 (1).

Proof. Without loss of generality, suppose 5 (0) < H0 < 5 (1). Put � := {G ∈
[0, 1] : 5 (G) ≤ H0}. Since 5 (0) < H0, 0 ∈ � and we see that � is nonempty. By
definition, � is bounded above. Therefore, the least upper bound axiom tells us that
� has a least upper bound, which we denote by G0. We show below that 5 (G0) = H0.

We start by showing that 5 (G0) is defined; i.e., we show that G0 ∈ [0, 1]. Since 1
is an upper bound of �, the least upper bound G0 ≤ 1. Since G0 is an upper bound of
� and since 0 ∈ �, we must have 0 ≤ G0.

Let Y > 0 be given. Continuity of 5 at G0 implies that there is an X > 0 such that
for all G ∈ [0, 1] with |G − G0 | < X, we have | 5 (G) − 5 (G0) | < Y. Equivalently,

−Y + 5 (G) < 5 (G0) < 5 (G) + Y. (1)

Since G0 is the least upper bound of �, G0 − X is not an upper bound of �; hence,
there is some G1 ∈ � with G0 − X < G1 ≤ G0. Since |G1 − G0 | < X, we have from the
right-hand inequality in (1) that

5 (G0) < 5 (G1) + Y ≤ H0 + Y, since G1 ∈ �.

Since Y was arbitrary, it must be that 5 (G0) ≤ H0. This further implies that G0 < 1;
otherwise, if G0 = 1, we would have H0 < 5 (1) = 5 (G0) ≤ H0. Now that we have
G0 < 1, choose any G2 with G0 < G2 < 1 and |G2 − G0 | < X. Then by the left-hand
inequality in (1),

5 (G0) > 5 (G2) − Y > H0 − Y, since G2 > G0 implies G2 ∉ �.

Since Y was arbitrary, it must be that 5 (G0) ≥ H0.

Lemma 1. If 0 < 0 < 1 < ∞, then 0= < 1= for = = 1, 2, . . . .

Proof. Put C := 0/1 < 1. Repeatedly multiplying this inequality by C yields
C2 < C, C3 < C2, etc. Hence, C= < · · · < C2 < 1. It follows that 0=/1= < 1 or 0= < 1=.

Corollary 2 (=th Roots). Every positive real number has a unique positive =th
root for = = 1, 2, . . . .

Proof. Given H0 > 0, we must prove the existence of G0 > 0 with G=0 = H0. If
H0 = 1, we can take G0 = 1. If H0 < 1, then 0 := H0/2 < H0 < 1 satisfies 0= < 0 < H0.
With 1 := 1, we have 0= < H0 < 1 = 1=. Now apply the intermediate-value theorem
to the continuous function 5 (G) := G= on [0, 1] to get the existence of G0. By the
lemma, G0 is unique. For H0 > 1, let D solve 5 (D) = 1/H0; i.e., D= = 1/H0 or
(1/D)= = H0.
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