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The Intermediate-Value Theorem
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Abstract

A simple proof of the intermediate-value theorem is given. As an easy corollary,
we establish the existence of nth roots of positive numbers. It is assumed that the
reader is familiar with the following facts and concepts from analysis:

* Let A be a nonempty set of real numbers bounded above. Then A has a least
upper bound xq [1].

* A function f is continuous at x( if given any & > 0, there is a § > 0 such that
for all x with |x — x¢| < &, |f(x) — f(x0)| < &. This last inequality can be
rewritten as

—& < f(x) = f(x0) <&
or, by multiplying through by —1,
—& < f(x0) - f(x) <e,

from which we get
—e+ f(x) < f(x0) < f(x) +e&.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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The Intermediate-Value Theorem. Let f be a real-valued, continuous function
defined on a finite interval [a, b). Then f takes all values between f(a) and f(b).

Proof. Without loss of generality, suppose f(a) < yo < f(b). Put A := {x €
[a,b] : f(x) < yo}. Since f(a) < yg, a € A and we see that A is nonempty. By
definition, A is bounded above. Therefore, the least upper bound axiom tells us that
A has a least upper bound, which we denote by xy. We show below that f(xg) = yo.

We start by showing that f(xp) is defined; i.e., we show that xo € [a, b]. Since b
is an upper bound of A, the least upper bound xo < b. Since x( is an upper bound of
A and since a € A, we must have a < xg.

Let € > 0 be given. Continuity of f at xo implies that there is an 6 > 0 such that
for all x € [a, b] with |x — xg| < &, we have | f(x) — f(xo)| < &. Equivalently,

—e+ f(x) < f(xo0) < f(x) +e&. (1)

Since xq is the least upper bound of A, xo — § is not an upper bound of A; hence,
there is some x| € A with xg — § < x; < xg. Since |x; — x9| < &, we have from the
right-hand inequality in (I that

f(x0) < f(x1)+& < yp+e, sincex; € A.

Since & was arbitrary, it must be that f(xg) < yo. This further implies that xo < b;
otherwise, if xo = b, we would have yy < f(b) = f(x9) < yo. Now that we have
Xo < b, choose any x; with xg < xp < b and |x; — x9| < 6. Then by the left-hand

inequality in (),
f(xg) > f(x2) —& >yp—&, sincexy > xo implies xp ¢ A.
Since & was arbitrary, it must be that f(xo) > yo. L]
Lemmal. I[fO<a <b < oo, thena™ < b" forn=1,2,....

Proof. Putt := a/b < 1. Repeatedly multiplying this inequality by ¢ yields
12 <t,13 <2 etc. Hence, 1" < --- < 2 < 1. It follows that a”* /b" < 1 or a™ < b".

([

Corollary 2 (nth Roots). Every positive real number has a unique positive nth
rootforn=1,2,....

Proof. Given yo > 0, we must prove the existence of xo > 0 with x;j = yo. If
yo=1,wecantakexg = 1. If yg < 1,then a := yo/2 < yg < 1 satisfies a” < a < yy.
With b := 1, we have a" < yg < 1 = b". Now apply the intermediate-value theorem
to the continuous function f(x) := x" on [a, b] to get the existence of xy. By the
lemma, xo is unique. For yo > 1, let u solve f(u) = 1/yo; ie., u = 1/yy or

(1/u)" = yo. U
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