The Intermediate-Value Theorem

John A. Gubner

Department of Electrical and Computer Engineering University of Wisconsin–Madison

Abstract

A simple proof of the intermediate-value theorem is given. As an easy corollary, we establish the existence of *n*th roots of positive numbers. It is assumed that the reader is familiar with the following facts and concepts from analysis:

- Let *A* be a nonempty set of real numbers bounded above. Then *A* has a least upper bound x_0 [1].
- A function *f* is continuous at x_0 if given any $\varepsilon > 0$, there is a $\delta > 0$ such that for all *x* with $|x x_0| < \delta$, $|f(x) f(x_0)| < \varepsilon$. This last inequality can be rewritten as

$$-\varepsilon < f(x) - f(x_0) < \varepsilon$$

or, by multiplying through by -1,

$$-\varepsilon < f(x_0) - f(x) < \varepsilon,$$

from which we get

$$-\varepsilon + f(x) < f(x_0) < f(x) + \varepsilon.$$

If you find this writeup useful, or if you find typos or mistakes, please let me know at John.Gubner@wisc.edu

References

[1] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.

The Intermediate-Value Theorem. Let f be a real-valued, continuous function defined on a finite interval [a, b]. Then f takes all values between f(a) and f(b).

Proof. Without loss of generality, suppose $f(a) < y_0 < f(b)$. Put $A := \{x \in [a, b] : f(x) \le y_0\}$. Since $f(a) < y_0$, $a \in A$ and we see that A is nonempty. By definition, A is bounded above. Therefore, the least upper bound axiom tells us that A has a least upper bound, which we denote by x_0 . We show below that $f(x_0) = y_0$.

We start by showing that $f(x_0)$ is defined; i.e., we show that $x_0 \in [a, b]$. Since *b* is an upper bound of *A*, the least upper bound $x_0 \le b$. Since x_0 is an upper bound of *A* and since $a \in A$, we must have $a \le x_0$.

Let $\varepsilon > 0$ be given. Continuity of f at x_0 implies that there is an $\delta > 0$ such that for all $x \in [a, b]$ with $|x - x_0| < \delta$, we have $|f(x) - f(x_0)| < \varepsilon$. Equivalently,

$$-\varepsilon + f(x) < f(x_0) < f(x) + \varepsilon.$$
(1)

Since x_0 is the *least* upper bound of A, $x_0 - \delta$ is not an upper bound of A; hence, there is some $x_1 \in A$ with $x_0 - \delta < x_1 \le x_0$. Since $|x_1 - x_0| < \delta$, we have from the right-hand inequality in (1) that

$$f(x_0) < f(x_1) + \varepsilon \le y_0 + \varepsilon$$
, since $x_1 \in A$.

Since ε was arbitrary, it must be that $f(x_0) \le y_0$. This further implies that $x_0 < b$; otherwise, if $x_0 = b$, we would have $y_0 < f(b) = f(x_0) \le y_0$. Now that we have $x_0 < b$, choose any x_2 with $x_0 < x_2 < b$ and $|x_2 - x_0| < \delta$. Then by the left-hand inequality in (1),

$$f(x_0) > f(x_2) - \varepsilon > y_0 - \varepsilon$$
, since $x_2 > x_0$ implies $x_2 \notin A$.

Since ε was arbitrary, it must be that $f(x_0) \ge y_0$.

Lemma 1. If $0 < a < b < \infty$, then $a^n < b^n$ for n = 1, 2, ...

Proof. Put t := a/b < 1. Repeatedly multiplying this inequality by t yields $t^2 < t$, $t^3 < t^2$, etc. Hence, $t^n < \cdots < t^2 < 1$. It follows that $a^n/b^n < 1$ or $a^n < b^n$.

Corollary 2 (*n*th Roots). *Every positive real number has a unique positive nth root for* n = 1, 2, ...

Proof. Given $y_0 > 0$, we must prove the existence of $x_0 > 0$ with $x_0^n = y_0$. If $y_0 = 1$, we can take $x_0 = 1$. If $y_0 < 1$, then $a := y_0/2 < y_0 < 1$ satisfies $a^n < a < y_0$. With b := 1, we have $a^n < y_0 < 1 = b^n$. Now apply the intermediate-value theorem to the continuous function $f(x) := x^n$ on [a, b] to get the existence of x_0 . By the lemma, x_0 is unique. For $y_0 > 1$, let u solve $f(u) = 1/y_0$; i.e., $u^n = 1/y_0$ or $(1/u)^n = y_0$.