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Magnitude and Phase of Complex Numbers

John A. Gubner
Department of Electrical and Computer Engineering
University of Wisconsin—-Madison

Abstract

Every nonzero complex number can be expressed in terms of its magnitude and
angle. This angle is sometimes called the phase or argument of the complex number.
Although formulas for the angle of a complex number are a bit complicated, the angle
has some properties that are simple to describe. In particular, when the complex
number is a function of frequency, we derive a simple formula for the derivative of
the argument.

If you find this writeup useful, or if you find typos or mistakes, please let me
know atJohn.Gubner@wisc.edu

Properties of the Angle of a Complex Number

Recall that every nonzero complex number z = x + jy can be written in the form
rel®, where r := |z| := \/x2 +? is the magnitude of z, and 8 is the phase, angle,
or argument of z. Common notations for 6 include /z and argz. With this notation,
we can write z = |z|e/*2% = |z|/z. For each z # 0, there are infinitely many possible
values for arg z, which all differ from each other by an integer multiple of 27. For this
reason, it is sometimes convenient to use the principal angle or principal argument
of z, which is the unique value of 6 € (—, ] for which z = |z|e/®. The principal
argument is denoted by Argz with an uppercase “A”. We show below that

tan~" (y/x), x>0, right half-plane,
tan~!(y/x) +m, x <0,y >0, upper left-half-plane,
tan~!(y/x) — 7, x <0,y <0, lower left-half-plane,

Arg(x+jy) = /2, x=0,y>0, +j-axis, M
—7/2, x=0,y <0, —j-axis,
undefined, x=0,y=0, origin,
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and that
m/2—tan"!'(x/y), y>0, upper half-plane,
—m/2—tan"!(x/y), y <0, lower half-plane,
Arg(x+ jy) =1 0, y=0,x > 0, positive real axis, )
T, y=0,x <0, negative real axis,
undefined, x=0,y=0, origin.

To obtain Argz in MATLAB, use angle (z), and note that angle (0) returns O.

Derivation of (1) and (2). Consider a complex number z = x + jy in the first quad-
rant, as shown in Figure When x and y are both positive, 6 € (0,7/2), and the the-
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Figure 1. A complex number z = x + jy in the first quadrant of the complex plane.

ory of right triangles tells us that tan @ = y/x. Similarly, tan(7/2 — 6) = x/y. Hence,
we have two formulas to choose from: 6 = tan~!(y/x) and 8 = 7/2 —tan~'(x/y).
The first formula holds even for x > 0 and y = 0; i.e., for z on the positive real axis,
the argument is zero. The second formula holds even for x =0 and y > 0; i.e., for z
on the + j-axis, the argument is 7 /2.
Now consider z = x+ jy in the second quadrant, as shown in Figure 2] Since
z=x+Jy .
b Jy

Figure 2. A complex number z = x+ jy in the second quadrant of the complex plane.

6 > 1 /2, we apply the theory of right triangles to the the supplementary angle 7 — 6.
Since x is negative, the length of the horizontal side is —x. Thus, tan(w — 6) =
y/(—x), and, since tan~! is an odd function, it follows that 8 = 7 +tan~! (y/x). Since
the complementary angle of 7 — 0 is n/2 — (7 — 0) = 6 — n/2, we have tan(6 —
7/2) = —x/y, and it follows that @ = 71/2 —tan~!(x/y). Notice this formula is the
same as the one derived in the first quadrant! Hence, for any z in the strict upper
half-plane, its argument is 71/2 — tan~! (x/y).
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For the third quadrant, it can similarly be shown that 8 = tan~!(y/x) — & and
0=—-m/2—tan"'(x/y).

For the fourth quadrant, 8 = tan~!(y/x) and = —7/2 —tan~!(x/y). Hence,
the argument of any z in the strict lower half-plane is —7/2 —tan~!(x/y), and the
argument of any z in the strict right half-plane is tan~! (y/x).

Functions of Frequency. Suppose z(f) = x(f) + jy(f), where x(f) and y(f) are
differentiable functions of f. Put 0(f) := arg(x(f) + jy(f)). Our goal is to compute
0'(f) for all £ with x(f)?>+y(f)? > 0. Note that differentiation removes any multiple
of 2 that distinguishes different versions of arg. Hence, we can use any version that
is convenient. There are four (overlapping) cases to consider: x(f) > 0, x(f) <0,

y(f) >0, and y(f) <0.
For x(f) > 0, we use the first formula in (1)) to write

tan(6(f)) = tan(tan™ "' (v(f)/x(f)) = y(f)/x(f).
Differentiating tan(0(f)) = y(f)/x(f) with respect to f yields

(£ (f) =y(H)x'(f)
x(f)? '

Since sec? = 1+ tan?, and since tan’(0(f)) = y(f)?/x(f)?, we can write

[1+y(£)2/x()?]6(f) (W) =y X ()

sec’(0(f))0'(f) =

Solving for 6'(f), we obtain

d . x(N)y'(f) = y(N)x'(f)
warg(x(f)ﬂy(f))— OO

For y(f) < 0, we use the second formula in (), the identity tan(7/2 — o) =
1/tan , and the fact that the tangent is odd. It follows that

tan(6(f)) = tan(—x/2 —tan" ' (x(f)/¥(/)))
= —tan(7/2+tan " (x(f)/¥(f)))
= —1/tan(—tan"" (x(f)/¥(f))) = ¥(f)/x(f)-

Arguing as above, we see that (3| . ) holds for y(f) < 0. It can similarly be shown that
(3) holds for y(f) > 0.

To handle the case x(f) < 0, we cannot use Arg because it is discontinuous across
the negative real axis. However, if we add 27 to the third formula in @ the result
will be identical to the second formula in (I). In other words, for z = x+ jy in the
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strict left half-plane, we can write arg(x + jy) = tan~!(y/x) 4 7. Since the tangent

function has period 7, we have

tan(6(f)) = tan(arg(x(f) + jy(f))) = tan(tan™" (y(f) /x(f)) +7) = ¥(f) /x(f),

and (3)) holds for x(f) < 0.
Putting everything together, we have

of

O arg(x(f) + iv(f)) =

()" () =y()x"(f)

x(f)2+y(f)?

. x(f)2 ()2 >0.
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