APPENDIX B Mathematical Induction

Consider a statement about positive integers, for example

P(n):
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, (B.1)

where $n \ge 1$. Using (B.1), we see that P(1) is given by

$$\sum_{k=1}^{1} k = \frac{1(1+1)}{2},$$

which is obviously true. When P(n) is given by (B.1), P(n+1) is given by

$$\sum_{k=1}^{n+1} k = \frac{[n+1]([n+1]+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}.$$
(B.2)

For a general statement P(n), to prove that it is true for all positive integers using **mathematical induction** on *n* is to carry out the following two-step procedure:

- 1. Show that P(1) is true.
- 2. Fix an arbitrary $n \ge 1$ and show that if P(n) is true, then P(n+1) is true; i.e., show that for $n \ge 1$,

 $P(n) \Rightarrow P(n+1).$

We note that sometimes it is more convenient to prove that for all $n \ge 2$, we have $P(n-1) \Rightarrow P(n)$.

When P(n) is given by (B.1), we have already noted that P(1) is true. We now show that $P(n) \Rightarrow P(n+1)$. Suppose P(n) is true. We must show that P(n+1) is true; i.e., we most show that (B.2) holds. So we write

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$$

= $\frac{n(n+1)}{2} + (n+1)$, by the induction hypothesis P(n),
= $\frac{n(n+1)}{2} + \frac{2(n+1)}{2}$
= $\frac{(n+1)(n+2)}{2}$.

Example B.1. Show that if $h \ge -1$, then

P(n):
$$(1+h)^n \ge 1+nh$$
 (B.3)

holds for $n \ge 1$.

Solution. First, when n = 1, (B.3) becomes $(1+h) \ge 1+h$, which is obviously true. Suppose $(1+h)^n \ge 1+nh$. We must show that (B.3) holds for *n* replaced by n+1; i.e., we must show that

$$(1+h)^{n+1} \ge 1 + (n+1)h$$

To derive this, write

$$(1+h)^{n+1} = (1+h)^n (1+h)$$

$$\geq (1+nh)(1+h), \quad \text{by the induction hypothesis (B.3),} \qquad (B.4)$$

$$= 1+nh+h+nh^2$$

$$\geq 1+(n+1)h, \quad \text{since } nh^2 \geq 0.$$

Note that the inequality in (B.4) requires $(1+h) \ge 0$; i.e., $h \ge -1$.

Sometimes it is convenient to start the induction at n = 0.

Example B.2 (Division Algorithm). Let *d* be a given positive integer. Then

$$P(n): \quad n = dq + r, \quad \text{for some } 0 \le r < d \text{ and } q \ge 0,$$

holds for $n \ge 0$.

Solution. If n = 0, we can take q = r = 0. Now suppose the result is true for some $n \ge 0$. To show it is true for n + 1, use the induction hypothesis to write

$$n = dq + r$$
, $0 \le r < d$.

Adding one to both sides of the above equation shows that

$$n+1 = dq + (r+1).$$

If r + 1 < d, we have the desired representation of n + 1. Otherwise r + 1 = d, and the above display becomes n + 1 = d(q + 1).

Problems

1. Show that for $n \ge 1$,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. Show that for $n \ge 1$,

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

3. Recall the **binomial coefficients** $\binom{n}{k} := n!/[k!(n-k)!]$. Derive the Leibniz rule,

$$(xy)^{(n)} = \sum_{k=0}^{n} {n \choose k} x^{(k)} y^{(n-k)}, \quad n \ge 0,$$

where $x^{(n)}$ is the *n*th derivative of *x*. In particular, $x^{(0)} = x$, $x^{(1)} = x'$, $x^{(2)} = x''$, etc. *Hint:* The easily verified identity

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}, \quad n \ge k \ge 1,$$

may be useful.