APPENDIX B

Mathematical Induction

Consider a statement about positive integers, for example

$$
\begin{equation*}
\mathrm{P}(n): \quad \sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \tag{B.1}
\end{equation*}
$$

where $n \geq 1$. Using B.1), we see that $P(1)$ is given by

$$
\sum_{k=1}^{1} k=\frac{1(1+1)}{2}
$$

which is obviously true. When $\mathrm{P}(n)$ is given by $\mathrm{B} .1, \mathrm{P}(n+1)$ is given by

$$
\begin{align*}
\sum_{k=1}^{n+1} k & =\frac{[n+1]([n+1]+1)}{2} \\
& =\frac{(n+1)(n+2)}{2} \tag{B.2}
\end{align*}
$$

For a general statement $\mathrm{P}(n)$, to prove that it is true for all positive integers using mathematical induction on n is to carry out the following two-step procedure:

1. Show that $P(1)$ is true.
2. Fix an arbitrary $n \geq 1$ and show that if $\mathrm{P}(n)$ is true, then $\mathrm{P}(n+1)$ is true; i.e., show that for $n \geq 1$,

$$
\mathrm{P}(n) \Rightarrow \mathrm{P}(n+1) .
$$

We note that sometimes it is more convenient to prove that for all $n \geq 2$, we have $\mathrm{P}(n-1) \Rightarrow \mathrm{P}(n)$.

When $\mathrm{P}(n)$ is given by $\sqrt{\mathrm{B} .1}$, we have already noted that $\mathrm{P}(1)$ is true. We now show that $\mathrm{P}(n) \Rightarrow \mathrm{P}(n+1)$. Suppose $\mathrm{P}(n)$ is true. We must show that $\mathrm{P}(n+1)$ is true; i.e., we most show that $\bar{B} .2$) holds. So we write

$$
\begin{aligned}
\sum_{k=1}^{n+1} k & =\sum_{k=1}^{n} k+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1), \quad \text { by the induction hypothesis } \mathrm{P}(n), \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Example B.1. Show that if $h \geq-1$, then

$$
\begin{equation*}
\mathrm{P}(n): \quad(1+h)^{n} \geq 1+n h \tag{B.3}
\end{equation*}
$$

holds for $n \geq 1$.
Solution. First, when $n=1$, B.3 becomes $(1+h) \geq 1+h$, which is obviously true. Suppose $(1+h)^{n} \geq 1+n h$. We must show that B.3) holds for n replaced by $n+1$; i.e., we must show that

$$
(1+h)^{n+1} \geq 1+(n+1) h
$$

To derive this, write

$$
\begin{align*}
(1+h)^{n+1} & =(1+h)^{n}(1+h) \\
& \geq(1+n h)(1+h), \quad \text { by the induction hypothesis } \overline{\mathrm{B} .3}, \tag{B.4}\\
& =1+n h+h+n h^{2} \\
& \geq 1+(n+1) h, \quad \text { since } n h^{2} \geq 0 .
\end{align*}
$$

Note that the inequality in $\bar{B} .4$ requires $(1+h) \geq 0$; i.e., $h \geq-1$.

Sometimes it is convenient to start the induction at $n=0$.
Example B. 2 (Division Algorithm). Let d be a given positive integer. Then

$$
\mathrm{P}(n): \quad n=d q+r, \quad \text { for some } 0 \leq r<d \text { and } q \geq 0
$$

holds for $n \geq 0$.
Solution. If $n=0$, we can take $q=r=0$. Now suppose the result is true for some $n \geq 0$. To show it is true for $n+1$, use the induction hypothesis to write

$$
n=d q+r, \quad 0 \leq r<d
$$

Adding one to both sides of the above equation shows that

$$
n+1=d q+(r+1)
$$

If $r+1<d$, we have the desired representation of $n+1$. Otherwise $r+1=d$, and the above display becomes $n+1=d(q+1)$.

Problems

1. Show that for $n \geq 1$,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

2. Show that for $n \geq 1$,

$$
\sum_{k=1}^{n}(2 k-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}
$$

3. Recall the binomial coefficients $\binom{n}{k}:=n!/[k!(n-k)!]$. Derive the Leibniz rule,

$$
(x y)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} x^{(k)} y^{(n-k)}, \quad n \geq 0
$$

where $x^{(n)}$ is the nth derivative of x. In particular, $x^{(0)}=x, x^{(1)}=x^{\prime}, x^{(2)}=x^{\prime \prime}$, etc. Hint: The easily verified identity

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}, \quad n \geq k \geq 1
$$

may be useful.

