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Basic Properties of Power Series
John A. Gubner

Department of Electrical and Computer Engineering
University of Wisconsin–Madison

Abstract

These notes provide a quick introduction (with proofs) to the basic properties of
power series, including the exponential function and the fact that power series can be
differentiated term by term. It is assumed that the reader is familiar with the following
facts and concepts from analysis [4]:

• The triangle inequality [4, pp. 14–15, Theorem 1.13 and p. 23, Problem 13]:
For complex a and b, ∣∣|a|− |b|∣∣≤ |a+b| ≤ |a|+ |b|.

• The binomial theorem: For complex a and b,

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k, n = 0,1, . . . .

• If zn→ z, then |zn| → |z|.
• A convergent sequence is bounded.
• If a series converges, its terms tend to zero and are therefore bounded.
• Cauchy sequences.
• A convergent sequence is Cauchy.
• The real and complex numbers are complete.
• Uniform convergence.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at gubner@engr.wisc.edu
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1. Background Results from Analysis

Lemma 1. For n≥ 2,
n−1

∑
k=1

k = n(n−1)/2.

Proof. Induction.

Lemma 2. If h > 0, then (1+ h)n ≥ 1+ nh for n ≥ 1, and (1+ h)n ≥ 1+ nh+
n(n−1)h2/2 for n≥ 2.

Proof. These formulas are immediate from the binomial theorem, or they can be
proved easily by induction on n.

Lemma 3. If 0≤ t < 1, then tn→ 0, ntn→ 0, and (n−1)tn→ 0.

Proof. The results are trivial for t = 0, so fix 0 < t < 1. Then h := (1/t)−1 > 0
and we can write t = 1/(1+h). By Lemma 2,

tn =
1

(1+h)n ≤
1

1+nh
≤ 1

nh

and
tn =

1
(1+h)n ≤

1
1+nh+n(n−1)h2/2

≤ 2
n(n−1)h2 .

Now fix ε > 0. Then in the first case, the right-hand side is less than ε if n > 1/(εh).
In the second case, we have ntn < ε if n > 1+2/(εh2), and we have (n−1)tn < ε if
n > 2/(εh2).

Remark. From ntn→ 0, we can write ntn−1 = (ntn/t)→ 0/t = 0.

Lemma 4. If t > 0, then t1/n→ 1.

Proof. (Based on [4, pp. 57–58, Theorem 3.20(b)].) If t = 1, then t1/n = 1→ 1.
If t > 1, then t1/n > 1 and xn := t1/n−1 > 0. Now use Lemma 2 to write

t = (1+ xn)
n ≥ 1+nxn.

Rearrange this as xn ≤ (t−1)/n→ 0. But xn→ 0 implies t1/n→ 1. If 0 < t < 1, then
s := 1/t > 1 and s1/n→ 1 by the preceding argument. Hence, t1/n = 1/s1/n→ 1.

Theorem 5 (Geometric Series). If z is a complex number, then

∞

∑
n=0

zn =
1

1− z
, |z|< 1.
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Proof. For complex z, put

SN(z) :=
N−1

∑
n=0

zn. (1)

Note that SN(1) = N. For z 6= 1, write

SN(z)− zSN(z) = (1+ z+ · · ·+ zN−1)− (z+ z2 + · · ·+ zN) = 1− zN .

Rearranging yields

SN(z) =
1− zN

1− z
, z 6= 1. (2)

For |z| < 1, we must show that SN(z)→ 1/(1− z). This follows from (2) if we can
show zN → 0. Since |z|< 1, we have |zN |= |z|N → 0 by Lemma 3.

Theorem 6. If z is a complex number, then

∞

∑
n=1

nzn−1 =
1

(1− z)2 , |z|< 1.

Proof. Differentiating (1) and (2) shows that

S ′N(z) =
N−1

∑
n=1

nzn−1 =
1−NzN−1 +(N−1)zN

(1− z)2 . (3)

For |z| < 1, we have N|z|N−1 and (N−1)|z|N both tending to zero by Lemma 3 and
the Remark following it.

Theorem 7. An absolutely convergent series converges.

Proof. Let w1,w2, . . . be complex numbers, and put W̃N := ∑
N−1
n=0 |wn| and WN :=

∑
N−1
n=0 wn. We must show that if W̃N converges, then WN also converges. For M > N,

use the triangle inequality to write

|WM−WN |=
∣∣∣∣M−1

∑
n=N

wn

∣∣∣∣≤ M−1

∑
n=N
|wn|= W̃M−W̃N .

By hypothesis, W̃N converges and is therefore Cauchy. The above inequality shows
that WN is also Cauchy. Since the complex numbers are complete, WN converges.

Theorem 8 (Comparison Test). Let c1,c2, . . . be a sequence of nonnegative num-
bers such that ∑

N−1
n=0 cn converges. If w1,w2, . . . are complex numbers with |wn| ≤ cn

holding for all sufficiently large n, then ∑
N−1
n=0 wn and ∑

N−1
n=0 |wn| converge.
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Proof. Put CN := ∑
N−1
n=0 cn and define W̃N as in the proof of Theorem 7. Suppose

|wn| ≤ cn for all n≥ N0. Then for M > N ≥ N0,

W̃M−W̃N =
M−1

∑
n=N
|wn| ≤

M−1

∑
n=N

cn =CM−CN .

By hypothesis, CN converges and is therefore Cauchy. The above inequality shows
that W̃N is also Cauchy and therefore converges. By Theorem 7, ∑

N−1
n=0 wn also con-

verges.

Lemma 9. If w1,w2, . . . are complex numbers, and if ∑
N
n=1 wn converges, then∣∣∣∣ ∞

∑
n=1

wn

∣∣∣∣≤ ∞

∑
n=1
|wn|.

Remark. The above right-hand side may be infinite, but if it is finite, then the
series on the left converges by Theorem 7.

Proof. With the notation from proof of Theorem 7, let W := limN→∞ WN and
W̃ := limN→∞ W̃N . We must show that |W | ≤ W̃ . By the triangle inequality,

∣∣|WN |−
|W |
∣∣≤ |WN −W | → 0, and so |WN | → |W |. We can now write

|W |= lim
N→∞
|WN |= lim

N→∞

∣∣∣∣ N

∑
n=1

wn

∣∣∣∣≤ lim
N→∞

N

∑
n=1
|wn|= W̃ .

Theorem 10 (Discrete Fubini). Let wmn be complex numbers with
∞

∑
m=1

(
∞

∑
n=1
|wmn|

)
< ∞.

Then
∞

∑
m=1

∞

∑
n=1

wmn =
∞

∑
n=1

∞

∑
m=1

wmn.

Proof. There are four important implications of the hypothesis.

• For each n, ∑
∞
m=1 |wmn|< ∞. Hence, ∑

∞
m=1 wmn converges absolutely.

• For each m, ∑
∞
n=1 |wmn|< ∞. Hence, W N

m := ∑
N
n=1 wmn converges absolutely to

Wm := ∑
∞
n=1 wmn.

• Using Lemma 9, ∑
∞
m=1 |Wm|= ∑

∞
m=1
∣∣∑∞

n=1 wmn
∣∣≤ ∑

∞
m=1 ∑

∞
n=1 |wmn|< ∞. This

shows that ∑
∞
m=1 Wm converges absolutely.

• Given ε > 0, we can choose M so large that
∞

∑
m=M+1

(
∞

∑
n=1
|wmn|

)
< ε/2.
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Using this notation, we must prove that

∞

∑
m=1

Wm = lim
N→∞

N

∑
n=1

∞

∑
m=1

wmn.

For M as above, let N be so large that |Wm−W N
m |< ε/(2M) for m = 1, . . . ,M. Then∣∣∣∣ ∞

∑
m=1

Wm−
N

∑
n=1

∞

∑
m=1

wmn

∣∣∣∣ = ∣∣∣∣ ∞

∑
m=1

Wm−
∞

∑
m=1

N

∑
n=1

wmn

∣∣∣∣
=

∣∣∣∣ ∞

∑
m=1

Wm−
∞

∑
m=1

W N
m

∣∣∣∣
≤

∞

∑
m=1
|Wm−W N

m |, by Lemma 9,

=
M

∑
m=1
|Wm−W N

m |+
∞

∑
m=M+1

|Wm−W N
m |

≤ ε/2+
∞

∑
m=M+1

|Wm−W N
m |.

Denoting this last sum by SM , we have

SM =
∞

∑
m=M+1

∣∣∣∣ ∞

∑
n=N+1

wmn

∣∣∣∣≤ ∞

∑
m=M+1

∞

∑
n=N+1

|wmn| ≤
∞

∑
m=M+1

∞

∑
n=1
|wmn|< ε/2.

Theorem 11 (Uniform Cauchy Criterion). Let fn(z) be a sequence of complex-
valued functions defined on a subset E of the complex plane. If the fn are uniformly
Cauchy on E in the sense that for every ε > 0, there exists an N0 such that for all
n,m≥ N0,

| fn(z)− fm(z)|< ε, for all z ∈ E, (4)

then fn converges uniformly on E.

Proof. If the fn are uniformly Cauchy on E, then in particular for each z ∈ E,
fn(z) is a Cauchy sequence and therefore converges to some complex number, which
we denote by f (z). Hence, fn(z)→ f (z) for each z ∈ E. Given ε > 0, let N0 be such
that for all n,m≥ N0, (4) holds. We claim that for all n≥ N0,

| fn(z)− f (z)|< 2ε, for all z ∈ E.

Fix any z∈ E. Since fn(z)→ f (z), for all sufficiently large m, | fm(z)− f (z)|< ε . Fix
any such m that is also greater than N0. Then for n≥ N0,

| fn(z)− f (z)| ≤ | fn(z)− fm(z)|+ | fm(z)− f (z)|< ε + ε = 2ε.
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2. Basic Properties

Put

AN(z) :=
N−1

∑
n=0

anzn and ÃN(z) :=
N−1

∑
n=0
|anzn|,

where the an are arbitrary complex numbers. When AN(z) is known to converge, we
denote the limit by A(z), and when ÃN(z) is known to converge, we denote its limit
by Ã(z). This notation allows us to emphasize that the value of an infinite series is
the limit of the partial sums.

Associated with the above series, put

κ := limsup
n→∞

|an|1/n.

The radius of convergence is r := 1/κ , where 1/0 is taken as ∞, and 1/∞ is taken
as zero.1

Example 12. If an = 1/n!, show that κ = 0.

Solution. Let ε > 0 be given. Let N +1≥ 1/ε . Then for n > N,

n! = 1 ·2 · · ·N(N +1) · · ·n≥ N!
(

1
ε

)n−N

=
N!εN

εn ,

or ( 1
n!

)1/n
≤ ε

( 1
N!εN

)1/n
.

By Lemma 4, for sufficiently large n,
(
1/(N!εN)

)
< 2, which implies (1/n!)1/n < 2ε .

Since ε was arbitrary, (1/n!)1/n→ 0.

Theorem 13 (Radius of Convergence). If |z| < r, then AN(z) converges abso-
lutely, and if |z| > r, then AN(z) does not converge. Furthermore, if 0 < ρ < r,
then for some finite constant M, we have |an|< M/ρn for all n.

Proof. The conditions |z|< r and |z|> r are equivalent to |z|κ < 1 and |z|κ > 1.
It is convenient to put

θ(z) := |z|κ = limsup
n→∞

|anzn|1/n.

If θ(z) < 1, choose ε > 0 so small that θ(z) + ε < 1. The definition of limsup
implies that for all sufficiently large n we have |anzn|1/n < θ(z)+ε < 1. Equivalently,

1 Hence, κ is the curvature of a circle of radius r.
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|anzn| ≤ [θ(z)+ ε]n. This last quantity is the typical term in a convergent geometric
series, and so by the Comparison Test, AN(z) converges absolutely.

Now suppose θ(z) > 1. To obtain a contradiction, suppose AN(z) converges.
Then |anzn| → 0. However, using the definition of limsup in the definition of θ(z)
implies that there is a subsequence |ank znk |1/nk→ θ(z)> 1. Hence, there are infinitely
many values of n with |anzn|1/n ≥ 1; i.e., |anzn| ≥ 1. This contradicts |anzn| → 0.

If we take z = ρ in the first paragraph of the proof, then for all sufficiently large
n, say for n > N, we have |anρn|1/n < 1, which implies |anρn| < 1, or |an| < 1/ρn.
By taking M ≥ 1 and M > max1≤n≤N |an|ρn, we have |an|< M/ρn for all n.

Theorem 14 (Uniform Convergence). If AN(z) has radius of convergence r, then
AN(z) converges uniformly on any disk of radius strictly less than r.

Proof. Fix any 0 ≤ r1 < r. Since r1 ≥ 0, there is some complex z1 with |z1| =
r1. Hence, r1 = |z1| < r. Then AN(z1) converges absolutely. Equivalently, ÃN(z1)
converges and is therefore Cauchy. We now apply the Uniform Cauchy Criterion
Theorem 11 as follows. For |z| ≤ r1 = |z1| and M > N, write

|AN(z)−AM(z)|=
∣∣∣∣M−1

∑
n=N

anzn
∣∣∣∣≤ M−1

∑
n=N
|an| |z|n ≤

M−1

∑
n=N
|an| |z1|n = ÃM(z1)− ÃN(z1).

Since ÃN(z1) is Cauchy, the inequality shows that AN(z) is uniformly Cauchy.

Example 15. We now see that exp(z) := ∑
∞
n=0 zn/n! converges absolutely and

uniformly for all complex z.

Theorem 16. For complex z and w, exp(z+w) = exp(z)exp(w).

Proof. Using the binomial theorem, write

exp(z+w) =
∞

∑
n=0

(z+w)n

n!
=

∞

∑
n=0

1
n!

n

∑
k=0

(
n
k

)
zkwn−k.

We know that the middle expression above is a finite complex number for all complex
numbers z and w. In particular this is true when z and w are replaced by |z| and |w|,
respectively. Hence,

∞

∑
n=0

1
n!

n

∑
k=0

(
n
k

)
|z|k|w|n−k < ∞.

By the Discrete Fubini Theorem 10, the following calculations are justified. Let u(t)
denote the unit-step function, u(t) := 1 for t ≥ 0 and u(t) := 0 for t < 0. Then

exp(z+w) =
∞

∑
n=0

1
n!

n

∑
k=0

(
n
k

)
zkwn−k
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=
∞

∑
n=0

1
n!

∞

∑
k=0

(
n
k

)
zkwn−ku(n− k)

=
∞

∑
k=0

zk

k!

∞

∑
n=0

wn−k

(n− k)!
u(n− k)

=
∞

∑
k=0

zk

k!

∞

∑
n=k

wn−k

(n− k)!

=
∞

∑
k=0

zk

k!

∞

∑
m=0

wm

m!
= exp(z)exp(w).

Lemma 17 (Multiplication of Power Series). Let AN(z) and BN(z) each have a
positive radius of convergence, and let r denote the smaller of the radii. Then for
|z|< r, C(z) := A(z)B(z) is equal to ∑

∞
n=0 cnzn, where

cn :=
n

∑
k=0

akbn−k, n = 0,1, . . . .

Proof. For |z|< r, we can write

C(z) = A(z)B(z) =
(

∞

∑
k=0

akzk
)

B(z) =
∞

∑
k=0

akB(z)zk =
∞

∑
k=0

ak

(
∞

∑
`=0

b`z`
)

zk

=
∞

∑
k=0

∞

∑
`=0

akb`z`+k.

We can similarly write(
∞

∑
k=0
|akzk|

)(
∞

∑
`=0
|b`z`|

)
=

∞

∑
k=0

∞

∑
`=0
|ak| |b`| |z|`+k,

where the left-hand side is finite because power series are absolutely convergent.
Hence, we can apply Theorem 10 when we need it shortly. Recalling the unit-step
function u introduced earlier, write

C(z) =
∞

∑
k=0

∞

∑
`=0

akb`z`+k =
∞

∑
k=0

∞

∑
n=k

akbn−kzn =
∞

∑
k=0

∞

∑
n=0

akbn−kznu(n− k)

=
∞

∑
n=0

∞

∑
k=0

akbn−kznu(n− k)

=
∞

∑
n=0

n

∑
k=0

akbn−kzn
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Theorem 18 (Differentiation of Power Series). Suppose AN(z) has radius of con-
vergence r. Then for all |z|< r,

d
dz

∞

∑
n=0

anzn =
∞

∑
n=1

nanzn−1.

Proof. Put BN(z) := ∑
N−1
n=1 nanzn−1. We first argue that BN(z) converges for

|z| < r. From the proof of Theorem 13, we can write |nanzn−1| = (n/|z|)|anzn| ≤
(n/|z|)[θ(z)+ ε]n. This last quantity is the typical term in a convergent series (mul-
tiply the result of Theorem 6 by z to see this). By the Comparison Test, BN(z) con-
verges absolutely, and we denote this limit by B(z).

Fix any |z0|< r and choose ρ with |z0|< ρ < r. We must show that

A(z)−A(z0)

z− z0
−B(z0)

tends to zero as z→ z0. Since A(z), A(z0), and B(z0) are given by convergent series,

A(z)−A(z0)−B(z0)(z− z0) =
∞

∑
n=0

anzn−
∞

∑
n=0

anzn
0−
[

∞

∑
n=1

nanzn−1
0

]
(z− z0)

=
∞

∑
n=1

an(zn− zn
0)−

∞

∑
n=1

nanzn−1
0 (z− z0)

=
∞

∑
n=1

an
[
zn− zn

0−nzn−1
0 (z− z0)

]
=

∞

∑
n=2

an
[
zn− zn

0−nzn−1
0 (z− z0)

]
.

Now write

zn− zn
0−nzn−1

0 (z− z0) = zn− zn
0−nzn−1

0 z+nzn
0

= zn +(n−1)zn
0−nzn−1

0 z

= zn[1+(n−1)(z0/z)n−n(z0/z)n−1]
= zn(z− z0)

2
n−1

∑
k=1

k(z0/z)k−1, by (3),

= (z− z0)
2

n−1

∑
k=1

kzk−1
0 zn−k+1.

Since |z0|< ρ , for z close to z0, we have |z|< ρ as well, and so

|A(z)−A(z0)−B(z)(z− z0)| = |z− z0|2
∣∣∣∣∣ ∞

∑
n=2

an

[n−1

∑
k=1

kzk−1
0 zn−k+1

]∣∣∣∣∣
9
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≤ |z− z0|2
∞

∑
n=2
|an|

n−1

∑
k=1

k|z0|k−1|z|n−k+1, by Lemma 9,

≤ |z− z0|2
∞

∑
n=2
|an|ρn

n−1

∑
k=1

k, since |z|, |z0|< ρ,

= |z− z0|2
∞

∑
n=2
|an|ρnn(n−1)/2, by Lemma 1.

If we can show this last sum is finite, then we can divide both sides by |z− z0| and
see that ∣∣∣∣A(z)−A(z0)

z− z0
−B(z0)

∣∣∣∣→ 0 as z→ z0.

To show that this last sum is finite, use the proof of Theorem 13 with z = ρ to
write

|an|ρnn(n−1)/2≤ [θ(ρ)+ ε]nn(n−1)/2.

The right-hand side is the typical term in a convergent series (differentiate (3) and let
N→ ∞), and so the desired result follows by the Comparison Test.
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