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Taylor Series with Remainder
and Application to Stirling’s Formula

John A. Gubner
Department of Electrical and Computer Engineering

University of Wisconsin–Madison

Abstract

Taylor’s Theoremwith remainder is stated and applied to the function ln(1−x)
and used to show that (

1 + x
n
)n

→ ex.

Other simple applications, a derivation of Stirling’s Formula, and a simple proof
of the theorem are also given.

If you �nd this writeup useful, or if you �nd typos or mistakes, please let me
know at John.Gubner@wisc.edu

1. The Theorem and Examples

Taylor’s Theoremwith Remainder. Suppose that f is n times continuously
di�erentiable on [a, b] for some integer n ≥ 0, and assume that f(n+1) exists on
(a, b). Fix any x, x0 ∈ [a, b]. Then there exists a � between x and x0 such that

f(x) =
n∑

k=0

f(k)(x0)
k! (x − x0)k +

f(n+1)(�)
(n + 1)!

(x − x0)n+1.

Example 1 (Taylor Series for ln(1 − x)). We begin by showing that if f(x) =
ln(1 − x) for x < 1, then f′(x) = −1∕(1 − x), f′′(x) = −1∕(1 − x)2, f′′′(x) =
−2∕(1 − x)3, and f(iv)(x) = −2 ⋅ 3∕(1 − x)4. In general, we have

f(k)(x) = − (k − 1)!
(1 − x)k

.

Taking x0 = 0, we have f(0) = 0, and so

ln(1 − x) = −
n∑

k=1

xk
k − xn+1

(n + 1)(1 − �)n+1
, x < 1, (1)
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where � lies between 0 and x. Notice that 1 − � is always positive, whether 0 <
� < x < 1 or x < � < 0. When n = 1, we have

ln(1 − x) = −x − x2
2(1 − �)2

, x < 1.

Example 2 (Bounding the Remainder Term). In the above formula, if |x| is
small, then |�| is also small because � lies between 0 and x. Hence, given any
0 < " < 1, if |x| < 1 is small enough, � will be so close to zero that 1∕(1 − �)2 is
nearly equal to one, say that

1 − " < 1
(1 − �)2

< 1 + ",

and it follows that

x2
2 (1 − ") < x2

2(1 − �)2
< x2

2 (1 + ").

This allows upper and lower bounds on the approximation ln(1 − x) ≈ −x; e.g.,

x2
2 (1 + ") < ln(1 − x) + x < x2

2 (1 − "). (2)

Example 3 (Taylor Series for ln(1 + t)). If we put x = −t in (1), we have

ln(1 + t) = −
n∑

k=1

(−t)k
k − (−t)n+1

(n + 1)(1 − �)n+1
, t > −1,

where � lies between 0 and −t. With n = 1, we obtain

ln(1 + t) = t − t2
2(1 − �)2

. (3)

The analog of (2) is

t2
2 (1 + ") < ln(1 + t) − t < t2

2 (1 − "). (4)

This observation is useful in deriving Stirling’s Formula in Section 3.

Example 4 (Taylor Series for ln t). If we put x = 1 − t in (1), we have

ln t = −
n∑

k=1

(1 − t)k
k − (1 − t)n+1

(n + 1)(1 − �)n+1
, t > 0.

2



TaylorSeriesAndStirlingFormula.tex 6/17/2021, 6/23, 6/24, June 25, 2021

With n = 1, we have

ln t = t − 1 − (t − 1)2
2(1 − �)2

, t > 0.

Dropping the last term yields the “log inequality,”

ln t ≤ t − 1, t > 0.

Remark. The log inequality can also be obtained directly by writing

ln t = ∫
t

1

1
x dx ≤ ∫

t

1
1dx = t − 1, t ≥ 1,

since 1∕x ≤ 1 for x ≥ 1. A similar argument with 0 < t < 1 yields the same
inequality.

Example 5 (Convergence of (1 + x∕n)n to ex). We show thatn ln(1+x∕n)→
x, from which it follows that

(1 + x∕n)n → ex

since the exponential is a continuous function. In (3), let t = x∕n so that

ln(1 + x∕n) = x∕n −
(x∕n)2

2(1 − �n)2
,

where we write �n because it depends on n. Since �n lies between−x∕n and zero,
as n becomes large, �n → 0. Multiplying the above display by n yields

n ln(1 + x∕n) = x −
x2∕n

2(1 − �n)2
.

Hence,
||||n ln(1 + x∕n) − x|||| =

x2∕n
2(1 − �n)2

.

The denominator tends to two, and the numerator tends to zero, and so the quo-
tient tends to 0∕2 = 0.

Example 6 (Generalization of Example 5). A similar argument shows that if
xn → x, then n ln(1 + xn∕n)→ x. It then follows that

(1 + xn∕n)n → ex.
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To see that n ln(1 + xn∕n)→ x, write
||||n ln(1 + xn∕n) − x|||| ≤

||||n ln(1 + xn∕n) − xn
|||| + |xn − x|

≤
x2n∕n

2(1 − �n)2
+ |xn − x|.

Since xn converges, it is bounded, and so x2n∕n tends to zero.

2. Proof of the Taylor’s Theoremwith Remainder

An easy proof can be carried out by regarding the polynomial approximation
as a function of both x and x0; i.e., put

pn(x, x0) ∶=
n∑

k=0

f(k)(x0)
k! (x − x0)k

= f(x0) + f′(x0)(x − x0) +⋯ + f(n)(x0)
n! (x − x0)n.

Note that pn(t, t) = f(t) since the terms with derivatives are multiplied by zero.
We must prove the existence of � such that

f(x) = pn(x, x0) +
f(n+1)(�)
(n + 1)!

(x − x0)n+1. (5)

Consider the function

ℎ(t) ∶= pn(x, t) +
f(x) − pn(x, x0)
(x − x0)n+1

(x − t)n+1.

Observe that
ℎ(x0) = pn(x, x0) + f(x) − pn(x, x0) = f(x),

and
ℎ(x) = pn(x, x) +

f(x) − pn(x, x0)
(x − x0)n+1

⋅ 0 = pn(x, x) = f(x)

as well. By Rolle’s Theorem [2, p. 107, Th. 5.8], there is a point � between x and
x0 such that ℎ′(�) = 0. Now

ℎ′(t) = )
)tpn(x, t) −

f(x) − pn(x, x0)
(x − x0)n+1

(n + 1)(x − t)n

= f(n+1)(t)
n! (x − t)n − f(x) − pn(x, x0)

(x − x0)n+1
(n + 1)(x − t)n,
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because the partial derivative results in a telescoping sum that simpli�es (use the
derivative-of-product rule for for k = 1,… , n, but not for k = 0). Setting t = �
and ℎ′(�) = 0 and canceling common factors, we have

f(n+1)(�)
n! = f(x) − pn(x, x0)

(x − x0)n+1
(n + 1),

from which (5) follows.

3. Derivation of Stirling’s Formula

Recall that

Γ(x) ∶= ∫
∞

0
tx−1e−t dt, x > 0.

Using integration by parts, it is easy to show that Γ(x + 1) = xΓ(x). We derive a
limiting form for Γ(x + 1) and divide the result by x to obtain Stirling’s Formula,

lim
x→∞

Γ(x)
xx−1∕2e−x

=
√
2�.

We begin with

Γ(x + 1) = ∫
∞

0
txe−t dt = ∫

∞

0
exp[x ln t − t]dt (6)

and follow the method of Diaconis and Freedman [1]. The big-picture plan is to
make the change of variable v = (t − x)∕

√
x or t = x +

√
x v so that

Γ(x + 1) =
√
x ∫

∞

−
√
x
exp[x ln(x +

√
xv) − (x +

√
xv)]dv.

Then write the argument of exp as

x ln
(
x +

√
xv

)
−

(
x +

√
xv

)
= x

{
ln

(
x +

√
xv

)
−

(
1 + v∕

√
x
)}

= x
{
ln

(
1 + v∕

√
x
)
+ lnx −

(
1 + v∕

√
x
)}

so that1

Γ(x + 1) = xx+1∕2e−x ∫
∞

−
√
x
e−xg

(
v∕

√
x
)
dx, (7)

1 Since Γ(x + 1) = xΓ(x), the formula for Γ(x) will involve xx−1∕2 instead of xx+1∕2.
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where
g(t) ∶= t − ln(1 + t). (8)

The remaining work is to show that this last integral tends to
√
2� as x → ∞.

This will be done by breaking the range of integration into three parts so that one
of them tends to

√
2� while the others tend to zero.

3.1. Motivating the Change of Variable in Two Steps

The integrand on the right in (6) is maximized at t = x, which we take to be
positive since we will later divide by x. Since the maximum occurs at t = x, we
�rst make the change of variable u = t − x in (6) to obtain

Γ(x + 1) = ∫
∞

−x
exp[x ln(u + x) − (u + x)]du. (9)

Write

x ln(u + x) − (u + x) = x{ln(u + x) − (1 + u∕x)}

= x
{
ln u + x

x + lnx − (1 + u∕x)
}

= x{ln(1 + u∕x) + lnx − (1 + u∕x)}
= x{ln(1 + u∕x) − u∕x)} + x lnx − x.

Hence,

Γ(x + 1) = xxe−x ∫
∞

−x
exp[x{ln(1 + u∕x) − u∕x)}]du

= xxe−x ∫
∞

−x
e−xg(u∕x) du, where g is de�ned in (8).

By (3), we see that

xg(u∕x) =
u2∕x

2(1 − �)
,

which still has x in the numerator. So we make the change of variable v = u∕
√
x

and obtain (7).

3.2. Analysis of the Integral

Below we will break up the range of integration in (7) into the three intervals
(−

√
x,−L), [−L, L], and (L,∞), and use the approximation

xg
(
v∕

√
x
)
≈ v2∕2, for v ∈ [−L, L],
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along with the fact that ∫ ∞−∞ e−v2∕2 dv =
√
2�. But �rst, �x 0 < " < 1, and choose

L so large that

∫
L
√
1±"

−L
√
1±"

e−v2∕2 dv ≈ ∫
∞

−∞
e−v2∕2 dv =

√
2� (10)

and such that e−L2∕2∕L is negligible. Choose x > L2 (i.e.,
√
x > L) so large that if

|�| < L∕
√
x, then

1 − " < 1
(1 − �)2

< 1 + ".

Multiplying through by −v2∕2 yields

−v
2

2 (1 − ") > − v2
2(1 − �)2

> −v
2

2 (1 + ").

By (8) and (4), we see that −xg
(
v∕

√
x
)
is equal to the middle quotient above

where � lies between −v∕
√
x and zero. In the integral

∫
L

−L
e−xg

(
v∕

√
x
)
dv,

|v|∕
√
x < L∕

√
x, and so it satis�es

∫
L

−L
e−v2(1+")∕2 dv ≤ ∫

L

−L
e−xg

(
v∕

√
x
)
dv ≤ ∫

L

−L
e−v2(1−")∕2 dv.

These upper and lower bounds are approximately
√
2� on account of (10). It

remains to consider the other two intervals of integration mentioned earlier. Put
ℎx(v) ∶= xg

(
v∕

√
x
)
, and note that

ℎ′x(v) = xg′
(
v∕

√
x
)
∕
√
x =

√
x[1 − 1

1 + v∕
√
x
] = v

1 + v∕
√
x

is increasing for v > 0 with ℎ′x(v) → v as x → ∞. Note also that since g(t) → ∞
as t →∞,2 ℎx(v)→∞ as v →∞. We can now write

∫
∞

L
e−xg

(
v∕

√
x
)
dv = ∫

∞

L
e−ℎx(v) dv

2 Since g′(t) = 1 − 1∕(1 + t) = t∕(1 + t), it follows that

g(t) − g(1) = ∫
t

1
g′(s)ds = ∫

t

1

s
1 + s ds ≥ ∫

t

1

1
1 + s ds = ln(1 + t) − ln 2,

which tends to in�nity as t increases.
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= ∫
∞

L

ℎ′x(v)
ℎ′x(v)

e−ℎx(v) dv

≤ ∫
∞

L

ℎ′x(v)
ℎ′x(L)

e−ℎx(v) dv

= 1
ℎ′x(L)

∫
∞

L
ℎ′x(v)e−ℎx(v) dv

= 1
ℎ′x(L)

(
−e−ℎx(v)

)|||||||

v=∞

v=L

= e−ℎx(L)

ℎ′x(L)
.

As x → ∞, ℎ′x(L) → L, while ℎx(L) = xg
(
L∕

√
x
)
→ L2∕2. Hence, the above

integral tends to e−L2∕2∕L, which is negligible since L is large. We can similarly
treat

∫
−L

−
√
x
e−xg

(
v∕

√
x
)
dv = ∫

−L

−
√
x
e−ℎx(v) dv

= ∫
−L

−
√
x

ℎ′x(v)
ℎ′x(v)

e−ℎx(v) dv

≤ 1
ℎ′x(−L)

∫
−L

−
√
x
ℎ′x(v)e−ℎx(v) dv

= −e−ℎx(−L)
ℎ′x(−L)

.

Note that the denominator is negative.
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