Taylor Series with Remainder and Application to Stirling's Formula

John A. Gubner
Department of Electrical and Computer Engineering University of Wisconsin-Madison

Abstract

Taylor's Theorem with remainder is stated and applied to the function $\ln (1-x)$

 and used to show that$$
\left(1+\frac{x}{n}\right)^{n} \rightarrow e^{x}
$$

Other simple applications, a derivation of Stirling's Formula, and a simple proof of the theorem are also given.

If you find this writeup useful, or if you find typos or mistakes, please let me know at John.Gubner@wisc.edu

1. The Theorem and Examples

Taylor's Theorem with Remainder. Suppose that f is n times continuously differentiable on $[a, b]$ for some integer $n \geq 0$, and assume that $f^{(n+1)}$ exists on (a, b). Fix any $x, x_{0} \in[a, b]$. Then there exists $a \xi$ between x and x_{0} such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Example 1 (Taylor Series for $\ln (1-x)$). We begin by showing that if $f(x)=$ $\ln (1-x)$ for $x<1$, then $f^{\prime}(x)=-1 /(1-x), f^{\prime \prime}(x)=-1 /(1-x)^{2}, f^{\prime \prime \prime}(x)=$ $-2 /(1-x)^{3}$, and $f^{(i v)}(x)=-2 \cdot 3 /(1-x)^{4}$. In general, we have

$$
f^{(k)}(x)=-\frac{(k-1)!}{(1-x)^{k}} .
$$

Taking $x_{0}=0$, we have $f(0)=0$, and so

$$
\begin{equation*}
\ln (1-x)=-\sum_{k=1}^{n} \frac{x^{k}}{k}-\frac{x^{n+1}}{(n+1)(1-\xi)^{n+1}}, \quad x<1 \tag{1}
\end{equation*}
$$

where ξ lies between 0 and x. Notice that $1-\xi$ is always positive, whether $0<$ $\xi<x<1$ or $x<\xi<0$. When $n=1$, we have

$$
\ln (1-x)=-x-\frac{x^{2}}{2(1-\xi)^{2}}, \quad x<1
$$

Example 2 (Bounding the Remainder Term). In the above formula, if $|x|$ is small, then $|\xi|$ is also small because ξ lies between 0 and x. Hence, given any $0<\varepsilon<1$, if $|x|<1$ is small enough, ξ will be so close to zero that $1 /(1-\xi)^{2}$ is nearly equal to one, say that

$$
1-\varepsilon<\frac{1}{(1-\xi)^{2}}<1+\varepsilon
$$

and it follows that

$$
\frac{x^{2}}{2}(1-\varepsilon)<\frac{x^{2}}{2(1-\xi)^{2}}<\frac{x^{2}}{2}(1+\varepsilon)
$$

This allows upper and lower bounds on the approximation $\ln (1-x) \approx-x$; e.g.,

$$
\begin{equation*}
\frac{x^{2}}{2}(1+\varepsilon)<\ln (1-x)+x<\frac{x^{2}}{2}(1-\varepsilon) \tag{2}
\end{equation*}
$$

Example 3 (Taylor Series for $\ln (1+t)$). If we put $x=-t$ in (1), we have

$$
\ln (1+t)=-\sum_{k=1}^{n} \frac{(-t)^{k}}{k}-\frac{(-t)^{n+1}}{(n+1)(1-\xi)^{n+1}}, \quad t>-1
$$

where ξ lies between 0 and $-t$. With $n=1$, we obtain

$$
\begin{equation*}
\ln (1+t)=t-\frac{t^{2}}{2(1-\xi)^{2}} \tag{3}
\end{equation*}
$$

The analog of (2) is

$$
\begin{equation*}
\frac{t^{2}}{2}(1+\varepsilon)<\ln (1+t)-t<\frac{t^{2}}{2}(1-\varepsilon) . \tag{4}
\end{equation*}
$$

This observation is useful in deriving Stirling's Formula in Section 3
Example 4 (Taylor Series for $\ln t$). If we put $x=1-t$ in (1), we have

$$
\ln t=-\sum_{k=1}^{n} \frac{(1-t)^{k}}{k}-\frac{(1-t)^{n+1}}{(n+1)(1-\xi)^{n+1}}, \quad t>0
$$

With $n=1$, we have

$$
\ln t=t-1-\frac{(t-1)^{2}}{2(1-\xi)^{2}}, \quad t>0
$$

Dropping the last term yields the "log inequality,"

$$
\ln t \leq t-1, \quad t>0
$$

Remark. The log inequality can also be obtained directly by writing

$$
\ln t=\int_{1}^{t} \frac{1}{x} d x \leq \int_{1}^{t} 1 d x=t-1, \quad t \geq 1
$$

since $1 / x \leq 1$ for $x \geq 1$. A similar argument with $0<t<1$ yields the same inequality.

Example 5 (Convergence of $(1+x / n)^{n}$ to $\left.e^{x}\right)$. We show that $n \ln (1+x / n) \rightarrow$ x, from which it follows that

$$
(1+x / n)^{n} \rightarrow e^{x}
$$

since the exponential is a continuous function. In (3), let $t=x / n$ so that

$$
\ln (1+x / n)=x / n-\frac{(x / n)^{2}}{2\left(1-\xi_{n}\right)^{2}}
$$

where we write ξ_{n} because it depends on n. Since ξ_{n} lies between $-x / n$ and zero, as n becomes large, $\xi_{n} \rightarrow 0$. Multiplying the above display by n yields

$$
n \ln (1+x / n)=x-\frac{x^{2} / n}{2\left(1-\xi_{n}\right)^{2}}
$$

Hence,

$$
|n \ln (1+x / n)-x|=\frac{x^{2} / n}{2\left(1-\xi_{n}\right)^{2}}
$$

The denominator tends to two, and the numerator tends to zero, and so the quotient tends to $0 / 2=0$.

Example 6 (Generalization of Example 5). A similar argument shows that if $x_{n} \rightarrow x$, then $n \ln \left(1+x_{n} / n\right) \rightarrow x$. It then follows that

$$
\left(1+x_{n} / n\right)^{n} \rightarrow e^{x} .
$$

To see that $n \ln \left(1+x_{n} / n\right) \rightarrow x$, write

$$
\begin{aligned}
\left|n \ln \left(1+x_{n} / n\right)-x\right| & \leq\left|n \ln \left(1+x_{n} / n\right)-x_{n}\right|+\left|x_{n}-x\right| \\
& \leq \frac{x_{n}^{2} / n}{2\left(1-\xi_{n}\right)^{2}}+\left|x_{n}-x\right| .
\end{aligned}
$$

Since x_{n} converges, it is bounded, and so x_{n}^{2} / n tends to zero.

2. Proof of the Taylor's Theorem with Remainder

An easy proof can be carried out by regarding the polynomial approximation as a function of both x and x_{0}; i.e., put

$$
\begin{aligned}
p_{n}\left(x, x_{0}\right) & :=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

Note that $p_{n}(t, t)=f(t)$ since the terms with derivatives are multiplied by zero.
We must prove the existence of ξ such that

$$
\begin{equation*}
f(x)=p_{n}\left(x, x_{0}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} . \tag{5}
\end{equation*}
$$

Consider the function

$$
h(t):=p_{n}(x, t)+\frac{f(x)-p_{n}\left(x, x_{0}\right)}{\left(x-x_{0}\right)^{n+1}}(x-t)^{n+1} .
$$

Observe that

$$
h\left(x_{0}\right)=p_{n}\left(x, x_{0}\right)+f(x)-p_{n}\left(x, x_{0}\right)=f(x),
$$

and

$$
h(x)=p_{n}(x, x)+\frac{f(x)-p_{n}\left(x, x_{0}\right)}{\left(x-x_{0}\right)^{n+1}} \cdot 0=p_{n}(x, x)=f(x)
$$

as well. By Rolle's Theorem [2] p. 107, Th. 5.8], there is a point ξ between x and x_{0} such that $h^{\prime}(\xi)=0$. Now

$$
\begin{aligned}
h^{\prime}(t) & =\frac{\partial}{\partial t} p_{n}(x, t)-\frac{f(x)-p_{n}\left(x, x_{0}\right)}{\left(x-x_{0}\right)^{n+1}}(n+1)(x-t)^{n} \\
& =\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}-\frac{f(x)-p_{n}\left(x, x_{0}\right)}{\left(x-x_{0}\right)^{n+1}}(n+1)(x-t)^{n}
\end{aligned}
$$

because the partial derivative results in a telescoping sum that simplifies (use the derivative-of-product rule for for $k=1, \ldots, n$, but not for $k=0$). Setting $t=\xi$ and $h^{\prime}(\xi)=0$ and canceling common factors, we have

$$
\frac{f^{(n+1)}(\xi)}{n!}=\frac{f(x)-p_{n}\left(x, x_{0}\right)}{\left(x-x_{0}\right)^{n+1}}(n+1),
$$

from which (5) follows.

3. Derivation of Stirling's Formula

Recall that

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \quad x>0
$$

Using integration by parts, it is easy to show that $\Gamma(x+1)=x \Gamma(x)$. We derive a limiting form for $\Gamma(x+1)$ and divide the result by x to obtain Stirling's Formula,

$$
\lim _{x \rightarrow \infty} \frac{\Gamma(x)}{x^{x-1 / 2} e^{-x}}=\sqrt{2 \pi}
$$

We begin with

$$
\begin{equation*}
\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t=\int_{0}^{\infty} \exp [x \ln t-t] d t \tag{6}
\end{equation*}
$$

and follow the method of Diaconis and Freedman [1]. The big-picture plan is to make the change of variable $v=(t-x) / \sqrt{x}$ or $t=x+\sqrt{x} v$ so that

$$
\Gamma(x+1)=\sqrt{x} \int_{-\sqrt{x}}^{\infty} \exp [x \ln (x+\sqrt{x} v)-(x+\sqrt{x} v)] d v
$$

Then write the argument of exp as

$$
\begin{aligned}
x \ln (x+\sqrt{x} v)-(x+\sqrt{x} v) & =x\{\ln (x+\sqrt{x} v)-(1+v / \sqrt{x})\} \\
& =x\{\ln (1+v / \sqrt{x})+\ln x-(1+v / \sqrt{x})\}
\end{aligned}
$$

so that 1

$$
\begin{equation*}
\Gamma(x+1)=x^{x+1 / 2} e^{-x} \int_{-\sqrt{x}}^{\infty} e^{-x g(v / \sqrt{x})} d x \tag{7}
\end{equation*}
$$

${ }^{1}$ Since $\Gamma(x+1)=x \Gamma(x)$, the formula for $\Gamma(x)$ will involve $x^{x-1 / 2}$ instead of $x^{x+1 / 2}$.
where

$$
\begin{equation*}
g(t):=t-\ln (1+t) \tag{8}
\end{equation*}
$$

The remaining work is to show that this last integral tends to $\sqrt{2 \pi}$ as $x \rightarrow \infty$. This will be done by breaking the range of integration into three parts so that one of them tends to $\sqrt{2 \pi}$ while the others tend to zero.

3.1. Motivating the Change of Variable in Two Steps

The integrand on the right in (6) is maximized at $t=x$, which we take to be positive since we will later divide by x. Since the maximum occurs at $t=x$, we first make the change of variable $u=t-x$ in (6) to obtain

$$
\begin{equation*}
\Gamma(x+1)=\int_{-x}^{\infty} \exp [x \ln (u+x)-(u+x)] d u \tag{9}
\end{equation*}
$$

Write

$$
\begin{aligned}
x \ln (u+x)-(u+x) & =x\{\ln (u+x)-(1+u / x)\} \\
& =x\left\{\ln \frac{u+x}{x}+\ln x-(1+u / x)\right\} \\
& =x\{\ln (1+u / x)+\ln x-(1+u / x)\} \\
& =x\{\ln (1+u / x)-u / x)\}+x \ln x-x .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\Gamma(x+1) & \left.=x^{x} e^{-x} \int_{-x}^{\infty} \exp [x\{\ln (1+u / x)-u / x)\}\right] d u \\
& =x^{x} e^{-x} \int_{-x}^{\infty} e^{-x g(u / x)} d u, \quad \text { where } g \text { is defined in (8). }
\end{aligned}
$$

By (3), we see that

$$
x g(u / x)=\frac{u^{2} / x}{2(1-\xi)},
$$

which still has x in the numerator. So we make the change of variable $v=u / \sqrt{x}$ and obtain (7).

3.2. Analysis of the Integral

Below we will break up the range of integration in (7) into the three intervals $(-\sqrt{x},-L),[-L, L]$, and (L, ∞), and use the approximation

$$
x g(v / \sqrt{x}) \approx v^{2} / 2, \quad \text { for } v \in[-L, L]
$$

along with the fact that $\int_{-\infty}^{\infty} e^{-v^{2} / 2} d v=\sqrt{2 \pi}$. But first, fix $0<\varepsilon<1$, and choose L so large that

$$
\begin{equation*}
\int_{-L \sqrt{1 \pm \varepsilon}}^{L \sqrt{1 \pm \varepsilon}} e^{-v^{2} / 2} d v \approx \int_{-\infty}^{\infty} e^{-v^{2} / 2} d v=\sqrt{2 \pi} \tag{10}
\end{equation*}
$$

and such that $e^{-L^{2} / 2} / L$ is negligible. Choose $x>L^{2}$ (i.e., $\sqrt{x}>L$) so large that if $|\xi|<L / \sqrt{x}$, then

$$
1-\varepsilon<\frac{1}{(1-\xi)^{2}}<1+\varepsilon
$$

Multiplying through by $-v^{2} / 2$ yields

$$
-\frac{v^{2}}{2}(1-\varepsilon)>-\frac{v^{2}}{2(1-\xi)^{2}}>-\frac{v^{2}}{2}(1+\varepsilon)
$$

By (8) and (4), we see that $-x g(v / \sqrt{x})$ is equal to the middle quotient above where ξ lies between $-v / \sqrt{x}$ and zero. In the integral

$$
\int_{-L}^{L} e^{-x g(v / \sqrt{x})} d v
$$

$|v| / \sqrt{x}<L / \sqrt{x}$, and so it satisfies

$$
\int_{-L}^{L} e^{-v^{2}(1+\varepsilon) / 2} d v \leq \int_{-L}^{L} e^{-x g(v / \sqrt{x})} d v \leq \int_{-L}^{L} e^{-v^{2}(1-\varepsilon) / 2} d v
$$

These upper and lower bounds are approximately $\sqrt{2 \pi}$ on account of 10 . It remains to consider the other two intervals of integration mentioned earlier. Put $h_{x}(v):=x g(v / \sqrt{x})$, and note that

$$
h_{x}^{\prime}(v)=x g^{\prime}(v / \sqrt{x}) / \sqrt{x}=\sqrt{x}\left[1-\frac{1}{1+v / \sqrt{x}}\right]=\frac{v}{1+v / \sqrt{x}}
$$

is increasing for $v>0$ with $h_{x}^{\prime}(v) \rightarrow v$ as $x \rightarrow \infty$. Note also that since $g(t) \rightarrow \infty$ as $t \rightarrow \infty \sqrt[2]{2} h_{x}(v) \rightarrow \infty$ as $v \rightarrow \infty$. We can now write

$$
\int_{L}^{\infty} e^{-x g(v / \sqrt{x})} d v=\int_{L}^{\infty} e^{-h_{x}(v)} d v
$$

${ }^{2}$ Since $g^{\prime}(t)=1-1 /(1+t)=t /(1+t)$, it follows that

$$
g(t)-g(1)=\int_{1}^{t} g^{\prime}(s) d s=\int_{1}^{t} \frac{s}{1+s} d s \geq \int_{1}^{t} \frac{1}{1+s} d s=\ln (1+t)-\ln 2,
$$

which tends to infinity as t increases.

$$
\begin{aligned}
& =\int_{L}^{\infty} \frac{h_{x}^{\prime}(v)}{h_{x}^{\prime}(v)} e^{-h_{x}(v)} d v \\
& \leq \int_{L}^{\infty} \frac{h_{x}^{\prime}(v)}{h_{x}^{\prime}(L)} e^{-h_{x}(v)} d v \\
& =\frac{1}{h_{x}^{\prime}(L)} \int_{L}^{\infty} h_{x}^{\prime}(v) e^{-h_{x}(v)} d v \\
& =\left.\frac{1}{h_{x}^{\prime}(L)}\left(-e^{-h_{x}(v)}\right)\right|_{v=L} ^{v=\infty} \\
& =\frac{e^{-h_{x}(L)}}{h_{x}^{\prime}(L)}
\end{aligned}
$$

As $x \rightarrow \infty, h_{x}^{\prime}(L) \rightarrow L$, while $h_{x}(L)=x g(L / \sqrt{x}) \rightarrow L^{2} / 2$. Hence, the above integral tends to $e^{-L^{2} / 2} / L$, which is negligible since L is large. We can similarly treat

$$
\begin{aligned}
\int_{-\sqrt{x}}^{-L} e^{-x g(v / \sqrt{x})} d v & =\int_{-\sqrt{x}}^{-L} e^{-h_{x}(v)} d v \\
& =\int_{-\sqrt{x}}^{-L} \frac{h_{x}^{\prime}(v)}{h_{x}^{\prime}(v)} e^{-h_{x}(v)} d v \\
& \leq \frac{1}{h_{x}^{\prime}(-L)} \int_{-\sqrt{x}}^{-L} h_{x}^{\prime}(v) e^{-h_{x}(v)} d v \\
& =\frac{-e^{-h_{x}(-L)}}{h_{x}^{\prime}(-L)}
\end{aligned}
$$

Note that the denominator is negative.

References

[1] P. Diaconis and D. Freedman, "An elementary proof of Stirling's formula," Amer. Math. Monthly, vol. 93, no. 2, pp. 123-125, Feb. 1986.
[2] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.

