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The Distribution of Sums of Path Gains in the
IEEE 802.15.3a UWB Channel Model

Kei Hao and John A. Gubner, Member, IEEE

Abstract— When multipath arrival times and gains are spec-
ified by the IEEE 802.15.3a ultra-wideband (UWB) channel
model, formulas are derived for the characteristic function
of the sum of gains arriving in a given time window. These
formulas are first used to determine structural properties of
the corresponding distributions and densities. The formulas are
then used to compute the distribution and density functions by
numerically inverting the characteristic function. For small time
windows, the densities of the path-gain sums are bimodal and
therefore highly non-Gaussian.

Index Terms— Cluster process, Saleh–Valenzuela model, point
process, shot noise, ultra-wideband.

I. INTRODUCTION

CONSIDER a fading multipath channel in which the kth
multipath component arrives at time Tk with correspond-

ing gain Gk. The sum of path gains that arrive in a given time
window, say a ≤ t ≤ b, can be expressed mathematically by
the formula

Φ :=
∑
k

GkI[a,b](Tk), (1)

where the indicator function I[a,b](t) := 1 if t ∈ [a, b] and is
zero otherwise. Such sums of path gains are important because
they approximate the channel coefficients of the tapped-delay-
line and virtual-channel models [8], [13] used in the study of
direct-sequence systems [11].

Our interest is in the cumulative distribution function (cdf)
and probability density function (pdf) of the sum of path gains
Φ when the arrival times Tk and gains Gk are specified by
the IEEE 802.15.3a ultra-wideband (UWB) multipath model
[1], [3], [10].

Under the IEEE UWB multipath model, for very small
window sizes; e.g., 5.22 ps implicitly used in the code in [3],
the average number of paths for most windows is between
0.01 and 0.1. Hence, there can be no hope of a central-limit-
theorem effect making the sum of gains Φ approximately
normal. Without this approximation, the required analysis is
difficult [14].

Under the IEEE UWB multipath model, we derive formulas
for the characteristic function of Φ. These formulas are first
used to determine structural properties of the corresponding
cdf and pdf. The formulas are then used to compute the cdf and
pdf by numerically inverting the characteristic function. Our
numerical results show, for time windows of length less than

Manuscript received June 26, 2005; revised February 16, 2006 and June 1,
2006; accepted June 27, 2006. The associate editor coordinating the review
of this paper and approving it for publication was Z. Tian.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Wisconsin, Madison, WI 53706–1691 USA (e-mail:
khao@wisc.edu, gubner@engr.wisc.edu).

Digital Object Identifier 10.1109/TWC.2007.05438.

or equal to 1 ns, the densities are bimodal and therefore highly
non-Gaussian. For time windows of length 5 ns or more, the
densities for windows near the origin are nearly Gaussian.

II. STATEMENT OF THEORETICAL RESULTS

The key parameters of the IEEE UWB multipath model are
the cluster arrival rate C, the ray arrival rate R, and the
power-delay time constants τ0 and s0. The scale factor Ω0

is the second moment of a gain that arrives at time zero.

A. Prior Results

For any time window [a, b] with a ≥ 0, it is shown in [7]
that E[Φ] = 0 and that

var(Φ) = Ω0

(
I[a,b](0) +Rζ(a, b, s0) + Cζ(a, b, τ0)

+ CR
[
ζ(a, b, s0)ζ

(
0, a, s0τ0/(s0 − τ0)

)
+ s0ζ(a, b, τ0)

− s0ζ
(
a, b, s0τ0/(s0 − τ0)

)
e−b/s0

])
, (2)

where for any θ > 0,

ζ(a, b, θ) := θ[e−a/θ − e−b/θ].

To consider a time window of width Δ starting at time a, let
b = a + Δ, and observe that ζ(a, a + Δ, μ) = μe−a/μ[1 −
e−Δ/μ]. Thus, as a function of a, var(Φ) decays exponentially
fast in a as the window moves away from the origin.

To gain further insight into the sum of path gains in a
time window, we concentrate first on the computation of the
characteristic function of Φ, and then we compute the cdf and
pdf by inverting the characteristic function numerically.

B. New Results

Let Ψ(ν) := E[ejνΦ] denote the characteristic function of
Φ, and let F (x) denote the corresponding cdf. Proofs of the
following results are given in the Appendix.

Theorem 1: The characteristic function Ψ(ν) of Φ for time
window [a, b] has the product form

Ψ(ν) =
{
e−Rψν(0)e−CJ(ν), a > 0,
L0,0(ν)e−Rψν(0)e−CJ(ν), a = 0,

(3)

where the functions Lτ,s(ν), ψν(τ), and J(ν) are given in
the Appendix by the integral formulas (13), (14), and (18),
respectively.

Theorem 2: For a = 0, lim|ν|→∞ Ψ(ν) = 0, and the
characteristic function Ψ(ν) is absolutely integrable. Thus the
cdf F (x) has a continuous pdf f(x).
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Theorem 3: For a > 0, the characteristic function Ψ(ν)
has the decomposition Ψ(ν) = K0 + Ψ1(ν), where the limit
K0 := limν→∞ Ψ(ν) exists and is given by

K0 = e−R(b−a)e−C[b−ae−R(b−a)], (4)

and where Ψ1(ν) := Ψ(ν)−K0 is absolutely integrable. Thus
the cdf F (x) has the corresponding decomposition

F (x) = K0u(x) + F1(x), (5)

where u(·) is the unit step function, and F1(x) is continuous
and has a continuous density, i.e., F (x) has the impulsive pdf
f(x) = K0δ(x) + f1(x), where

f1(x) =
1
2π

∫ ∞

−∞
Ψ1(ν)e−jxνdν

is continuous and lim|x|→∞ f1(x) = 0.
Since (3) is not available in closed-form and each factor is

only available as an integral representation, it was necessary to
derive several important properties of Ψ(ν) in order to prove
Theorems 2 and 3. This is done in the Appendix.

The term K0u(x) in (5) has some important implications.
First of all, it shows that the cdf of the sum of path gains in a
time window [a, b] with a > 0 has a jump at x = 0. Second,
we have the following result:

Theorem 4: The probability that no path gains fall inside a
time window [a, b] with a > 0 is the quantity K0.

Theorem 5: The sums of path gains in nonoverlapping
windows are uncorrelated but statistically dependent.

Although the characteristic function must be computed nu-
merically, and the cdf is obtained by numerically inverting the
characteristic function, this is all quite practical as indicated
in Section III.

C. Line-of-Sight and Non-Line-of-Sight Models

According to the IEEE 802.15.3a UWB multipath model,
the first path arrives at time zero in line-of-sight (LOS) channel
models. Hence, initial windows of the form [0, b] are different
from noninitial windows of the form [a, b] with a > 0. In
the non-line-of-sight (NLOS) channel models, there is no
distinction between the case a = 0 and a > 0.

Our results above are stated for LOS channel models, but
they hold for NLOS channels with the following modifica-
tions. In NLOS channel models there is no cluster at time
zero and there are no subsidiary rays either. Hence, in NLOS
models, the first two terms inside the large parentheses in
(2) are omitted. Similarly, in (3) and (4) only the right-
most factor in each formula is present; i.e., Ψ(ν) = e−CJ(ν)

and K0 = exp{−C[b − ae−R(b−a)]}. In particular, while
Theorem 2 no longer holds, initial windows are accounted for
because for NLOS channels, Theorem 3 extends to the case
a = 0. Similarly, for NLOS channels, Theorem 4 extends
to the case a = 0. Theorem 5 holds unchanged for NLOS
channels.

III. NUMERICAL RESULTS

We now present numerical examples to illustrate the preced-
ing theorems. For the examples we used the parameters of the
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Fig. 1. Density functions of Φ for time windows (in ns) [0, Δ], [1, 1 + Δ],
[10, 10 + Δ], and [30, 30 + Δ], where Δ = 0.00522. The upper-left plot
also includes a corresponding histogram obtained via channel simulation. The
last three densities contain impulses (not shown) of strengths K0 = 0.987,
0.984, and 0.978, respectively.

channel model CM1 in [3, Table 1] and also in [1, Table II],
namely

Ω0 = 1/[(1 +Rs0)(1 + Cτ0)], C = 0.0233, R = 2.5,

τ0 = 7.1, s0 = 4.3, σ2 = σ2
1 + σ2

2 , σ1 = σ2 = 3.3941,

where C and R are the cluster and ray arrival rates (in ns−1),
τ0 and s0 are power-delay time constants (in ns), σ is the
standard deviation (in dB) of the path gains, and Ω0 is a scale
factor.

A. Computation of the Cdf and Pdf of Φ

In the case of an initial time window (a = 0) in LOS
channel models, the cdf F (x) is continuous. Hence, we can
use the approximation [4]

FP,D(x) ≈ b0Ψ(0) + 2 Re
D−1∑
q=0

cne
−jnπx/P , (6)

where c0 = 0, cn = bnΨ(nπ/P ) for n �= 0 and

bn :=

⎧⎨
⎩

1/2, n = 0,
j/nπ, n odd,
0, otherwise.

Here, D is the number of terms in the series for the approxi-
mation, and P is the approximate support of the corresponding
density. For graphical purposes, we approximate the density
f(x) by computing divided differences of FP,D(x).

In the case of a noninitial time window (a > 0) in LOS
channel models or any time window in NLOS channel models,
the cdf is not continuous, and the above method does not
apply to F (x). However, it does apply to F1(x) in (5). We
can thus write F (x) ≈ K0u(x)+F1,P,D(x), where F1,P,D(x)
is approximated as in (6) but with Ψ(·) replaced by Ψ1(·) =
Ψ(·) −K0.
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Fig. 2. Density functions of Φ for time windows (in ns) [0, 1], [1, 2], [10, 11],
and [30, 31]. The last three densities contain impulses (not shown) of strengths
K0 = 0.079, 0.065, and 0.042, respectively.
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Fig. 3. Density functions of Φ (solid lines) for time windows (in ns) [0, 5],
[1, 6], [10, 15], and [30, 35]. The last three densities contain impulses (not
shown) of strengths K0 = 3.42 × 10−6, 2.62 × 10−6, and 1.65 × 10−6,
respectively. The dashed lines are Gaussian densities with mean zero and
variance computed using (2).

B. Properties of the Pdf of Φ

Figs. 1–3 show the densities of the sums of gains arriving
in various time windows.

As a check on our methods, we compared our numerically
computed densities with corresponding histograms obtained
from channel simulations. We found excellent agreement, as
shown in the upper-left plot of Fig. 1. The other histograms fit
equally well, but are omitted to make the figures less cluttered.

We now make a few observations about the figures. First,
the densities become more narrow as the window moves
away from the origin. This is consistent with the observations
about var(Φ) made following the formula in (2). Second,
for noninitial windows (a > 0), the impulse strength K0

decreases as the window location moves away from the origin.
Taking b = a+ Δ in (4) shows that the decay is exponential
in a. Third, small window sizes lead to bimodal densities,
as shown in Figs. 1 and 2. Fourth, for windows at a fixed

starting time, as the width increases, the bimodality decreases,
and the densities become more bell shaped. Fifth, windows
with unimodal densities become less Gaussian as the window
locations move away from the origin.

The foregoing results are for the CM1 channel model, which
is a LOS model. We obtained similar results for NLOS channel
models.

IV. CONCLUSIONS

We have used the accepted IEEE 802.15.3a UWB multipath
model to derive formulas to compute the characteristic func-
tion of a sum of path gains in LOS and NLOS channel models.
We have also derived several structural properties of the
corresponding cdf and pdf. We have illustrated these properties
in our numerical examples. For initial time windows (a = 0) of
LOS channel models, the cdf and pdf are continuous functions.
For noninitial time windows (a > 0) of LOS channel models
and any time windows of NLOS channel models, the cdf has
a jump discontinuity of height K0 at x = 0. We have shown
that K0 is equal to the probability that no paths fall inside the
window. Furthermore, numerical results show that the density
functions are very sensitive to the window locations and sizes
and can be bimodal and thus highly non-Gaussian.

APPENDIX

A. Definitions and Notation

If we pair the arrival times Tk and gains Gk in (1) as
points (Tk, Gk) in the plane, then we can regard the multipath
components as a two-dimensional point process. Furthermore,
(1) is then seen to be a special case of the counting integral∫ ∞

0

∫ ∞

−∞
ϕ(s, g)N(ds× dg) :=

∑
k

ϕ(Tk, Gk), (7)

where N(·) is the counting measure on [0,∞) × (−∞,∞)
that puts a unit mass at each point (Tk, Gk), where the
arrival times Tk and the path gains Gk are specified by the
IEEE 802.15.3a model, and where ϕ(s, g) = gI[a,b](s).

As described in [1], [3], paths arrive in clusters. The initial
cluster arrives at time zero (LOS only), and the remaining
clusters arrive at the times of a homogeneous Poisson process
whose intensity is the cluster arrival rate C. The noninitial
paths of each cluster arrive according to a homogeneous
Poisson process starting at the arrival time of the initial path
of the cluster and whose intensity is the ray arrival rate R. A
path that arrives at time s as a part of a cluster that started
at time τ has a gain drawn independently from the density
fτ,s(·) described below.

As pointed out in [7], the foregoing description implies that
the counting measure N has the decomposition

N(B) = I{(0,G0)}(B) +Nr0(B) +N⊗(B), B ⊂ IR2, (8)

where all three terms are independent. In particular, Nr0 is a
two-dimensional Poisson process with intensity

λr(s, g) = Rf0,s(g), s ≥ 0, g ∈ IR. (9)



814 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 3, MARCH 2007

As a consequence of the independent decomposition in (8),
(7) has a corresponding decomposition into three independent
terms, which we write as

ϕ(0, G0) + Φr0 + Φ⊗. (10)

Note that since Nr0 is a Poisson process, Φr0 is a Poisson-
driven shot-noise random variable. (The foregoing is for LOS
models; for NLOS models only the third term in (8) and (10)
is present.)

Let fτ,s(·) denote the density of a path gain arriving at time
s that is part of a cluster that started at time τ . Following Saleh
and Valenzuela [12, eq. (26)] and Batra et al. [1, p. 2126], we
assume fτ,s(·) has second moment1

Ω0e
−τ/τ0e−(s−τ)/s0 , (11)

where τ0 and s0 are power-delay time constants and Ω0 is a
scale factor. For the IEEE 802.15.3a model in [1], a {±1}-
valued-Bernoulli(1/2) mixture of lognormal densities is used.
This implies that if G has density fτ,s(·), then 20 log10 |G| is
normal with mean

μτ,s :=
10

ln 10

[
ln Ω0 − τ/τ0 − (s− τ)/s0 −

( ln 10
10

)2σ2

2

]
and variance σ2. The lognormal mixture density and the
lognormal density are related by

fτ,s(x) = 1
2 [f|G|,τ,s(x) + f|G|,τ,s(−x)], (12)

where f|G|,τ,s(·) is the lognormal density,

f|G|,τ,s(x) =
20 exp

[
−1
2σ2

(
20 lnx
ln 10 − μτ,s

)2]
√

2π σx ln 10
, x > 0,

and f|G|,τ,s(x) = 0 otherwise. Because fτ,s(·) is even, its
characteristic function is real and even, and it is easily seen
to be

Lτ,s(ν) := Eτ,s[ejνG] =
∫ ∞

−∞
ejνgfτ,s(g) dg, (13)

which is just the real part of the characteristic function
of a lognormal random variable. By the Riemann–Lebesgue
Lemma [2], limν→±∞ Lτ,s(ν) = 0. The characteristic func-
tion (13) can be evaluated numerically, e.g., using Hermite–
Gauss quadrature [5].

For future reference, we put

ψν(τ) :=
∫ ∞

τ

∫ ∞

−∞
(1 − ejνgI[a,b](s))fτ,s(g) dg ds

=

{∫ b
max (a,τ)

1 − Lτ,s(ν) ds, τ ≤ b,

0, τ > b.
(14)

Since the range of integration is finite, the integral can be
computed using Legendre–Gauss quadrature. Furthermore,

lim
ν→∞ψν(τ) =

⎧⎨
⎩

0, τ > b,
b− a, τ < a,
b− τ, a ≤ τ ≤ b.

1This is in contrast to [1] and [12]. Their ray processes were defined by
taking Poisson processes starting at time zero and then translating them by
the arrival time of the initial path in the cluster. The two constructions are
equivalent provided we adjust the definition of fτ,s(·). This is done in (11)
where we use s − τ ; [1] and [12] would use only s.

B. Preliminary Results

The following results are used to prove the theorems stated
in Section II-B.

Lemma 6: Let f ∈ L1[0,∞), and put

ζ(ν) :=
∫ ∞

0

ejνxf(x) dx.

If f ′ ∈ L1[0,∞) and if f(0) = f(∞) = 0, then

lim
ν→∞ jνζ(ν) = 0.

Proof: Use integration by parts to write

ζ(ν) =
1
jν

∫ ∞

0

ejνxf ′(x) dx.

Then multiply through by jν and apply the Riemann–
Lebesgue Lemma.

Corollary 7: If the hypotheses of the Lemma 6 hold not
only for f(x), but for f (k)(x) for k = 1, . . . ,m− 1, then

(jν)mζ(ν) =
∫ ∞

0

ejνxf (m)(x) dx → 0, as ν → ∞.

Furthermore, since f (m) ∈ L1, the above integral is bounded,
say by B, and we can write |ζ(ν)| ≤ B/|ν|m.

Theorem 8: The characteristic function of a lognormal ran-
dom variable is absolutely integrable.

Proof: Apply Corollary 7 to the lognormal density
f|G|,τ,s(x) with m = 2. This shows that the lognormal char-
acteristic function is bounded by B/|ν|2, which is integrable.

Lemma 9: The characteristic function of the lognormal
mixture random variable is absolutely integrable.

Proof: By (12), Lτ,s(ν) = [ζ(ν)+ζ∗(ν)]/2 is absolutely
integrable by Theorem 8.

C. Proofs of Theorems Stated in Section II-B.

Proof of Theorem 1. On account of the independent
decomposition in (10), the characteristic function of Φ in (1)
factors into

Ψ(ν) := E[ejνΦ] = E[ejνϕ(0,G0)]E[ejνΦr0 ]E[ejνΦ⊗ ]. (15)

For the problem we are considering, ϕ(0, G0) = I[a,b](0)G0,
where G0 has the lognormal mixture density f0,0(·). Since
I[a,b](0) = 1 ⇔ a = 0, windows that include the ori-
gin are different from all other windows. If a = 0, then
E[ejνϕ(0,G0)] = L0,0(ν) which is given by (13) with τ =
s = 0.

Since Φr0 is a shot-noise random variable driven by a two-
dimensional Poisson process with intensity function (9), the
second factor in (15) is [9]

exp
[∫ ∞

0

∫ ∞

−∞
[ejνϕ(s,g) − 1]Rf0,s(g) dg ds

]
,

where ϕ(s, g) := gI[a,b](s). It is easy to see that

E[ejνΦr0 ] = e−Rψν(0). (16)
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The third factor in (15) can be computed using the smooth-
ing properties of conditional expectation in a similar manner
to that carried out in [6, Appendix]. The result is that

E[ejνΦ⊗ ] = e−CJ(ν), (17)

where

J(ν) :=
∫ ∞

0

∫ ∞

−∞
[1 − ekν(τ,γ)]fτ,τ(γ) dγ dτ, (18)

and
kν(τ, γ) := jνγI[a,b](τ) −Rψν(τ).

We can thus write

J(ν) =
∫ ∞

0

1 − Eτ,τ [ejνΓI[a,b](τ)]e−Rψν(τ) dτ

=
∫ a

0

1 − e−Rψν(τ) dτ +
∫ b

a

1 − Lτ,τ (ν)e−Rψν(τ) dτ,

where Γ is a generic lognormal mixture random variable with
the density function fτ,τ (·).

Proof of Theorem 2. From (15), (16), and (17),

Ψ(v) = L0,0(ν)e−Rψν(0)e−CJ(ν).

Since the second and the third factors are bounded by 1,
|Ψ(v)| ≤ L0,0(ν), which is absolutely integrable by Lemma 9.

Proof of Theorem 3. The formula for K0 in (4) is
established later in Theorem 10. The rest of the proof is as
follows. Let α(ν) = Rψν(0) + CJ(ν). Then Ψ1(ν) can be
written as ∫ ∞

−∞
|e−α(ν) −K0|dν.

Since the integrand is an even function, it is sufficient to prove
that the integral from zero to infinity is finite. We divide the
integral into two parts,∫ ν0

0

|e−α(ν) −K0|dν +
∫ ∞

ν0

|e−α(ν) −K0|dν.

The first integral is finite because the integrand is bounded.
We need to prove that the second integral is also finite. We
compare that integrand with 1/(νp) for p > 1, i.e., we study

lim
ν→∞

e−α(ν) −K0

1/(νp)
.

If the quotient converges to zero, it implies the second integral
is finite. We cannot compute the limit directly because the
numerator and the denominator both converge to zero. Thus,
we apply l’Hôpital’s rule and consider

lim
ν→∞

e−α(ν)α′(ν)
p/(νp+1)

.

Since α(ν) is bounded, it is sufficient to prove that the first
derivative of α(ν) over 1/νp+1 converges. From the definition
of α(ν),

α′(ν) = Rψ′
ν(0) + CJ ′(ν). (19)

From (14) and (13),

ψ′
ν(0) = −

∫ b

a

∫ ∞

−∞
ejνgjgfτ,s(g) dg ds. (20)

Now observe that

lim
ν→∞ψ′

ν(0)νp+1

= −
∫ b

a

lim
ν→∞

(
νp+1

∫ ∞

−∞
ejνgjgfτ,s(g)dg

)
ds,

where we have appealed to the dominated convergence
theorem [2]. Letting p = 2, we can apply Corollary 7
with m = 3 to the function gfτ,s(g) and conclude that
limν→∞ ψ′

ν(0)νp+1 = 0.
A similar analysis of the second term of (19), ignoring the

constant factor, leads to

lim
ν→∞ νp+1J ′(ν)

= −
∫ b

a

lim
ν→∞

(
e−Rψν(τ)νp+1

∫ ∞

−∞
ejνγjγfτ,τ(γ)dγ

)
dτ

+
∫ a

0

lim
ν→∞

(
e−Rψν(τ)νp+1Rψ′

ν(τ)
)
dτ

+
∫ b

a

lim
ν→∞

(
e−Rψν(τ)νp+1Rψ′

ν(τ)

·
∫ ∞

−∞
ejνγfτ,τ (γ)dγ

)
dτ.

Since e−Rψν(τ) is bounded, and the inner integral of the
third term is just the characteristic function of the lognormal
mixture random variable and its limit is zero, it can be proved
that all three terms converge to zero using the same steps.

Proof of Theorem 4. If we put ϕ(s, g) = I[a,b](s), then the
counting integral in (7) counts the number paths in the interval
[a, b] with a > 0. Let Nab denote the number of paths in the
interval [a, b]. It follows from the independent decomposition
in (8) with B = [a, b] × IR that Nab = Nab

r0 + Nab⊗ where
Nab
r0 and Nab

⊗ are independent. Then the probability generating
function is given by

Gab(z) = E[zN
ab

] = E[zN
ab
r0 ]E[zN

ab
⊗ ].

Since Nab
r0 is a Poisson random variable, its probability

generating function is given by [9]

E[zN
ab
r0 ] = e−R(b−a)(1−z).

The second factor can be computed using the smoothing
properties of conditional expectation in a similar manner to
that carried out in [6, Appendix]. The result is that

E[zN
ab
⊗ ] = e−Cq(z),

where

q(z) :=
∫ ∞

0

∫ ∞

−∞
[1 − zI[a,b](τ)eβz(τ,γ)]fτ,τ (γ) dγ dτ,

and

βz(τ, γ) := −R(1 − z)
∫ ∞

τ

I[a,b](s)ds.

Since this does not depend on γ, we can write

q(z) = a[1 − e−R(b−a)(1−z)]

+
∫ b

a

1 − ze−R(1−z) �∞
τ
I[a,b](s)ds dτ.
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Then the probability that no path gains fall in the interval can
be computed as

P(Nab = 0) = Gab(0) = e−R(b−a)e−C[b−ae−R(b−a)].

Proof of Theorem 5. The fact that sums of path gains
in nonoverlapping windows are uncorrelated was proved in
[7]. To prove they are statistically dependent, we proceed as
follows. Let 0 ≤ a < b ≤ c < d and put B1 := [a, b] and
B2 := [c, d]. Let ΨB(ν) be the characteristic function of Φ
with ϕ(s, g) = gIB(s), where B = B1 ∪B2. Then it is easy
to verify that ΨB(ν) �= ΨB1(ν)ΨB2(ν), where ΨB1(ν) and
ΨB2(ν) are the characteristic functions of Φ with ϕ(s, g) =
gIB1(s) and ϕ(s, g) = gIB2(s) respectively.

Theorem 10: The characteristic function Ψ(ν) is a real and
even function of ν, and

lim
ν→∞Ψ(ν) =

{
0, a = 0,
e−C[b−ae−R(b−a)]e−R(b−a), a > 0.

Proof: We have that the characteristic function is given
by (3). Since Lτ,s(ν) is a real and even function of ν, it can be
shown that ψν(τ) is also a real and even function. Thus, the
factor e−Rψν(τ) is a real and even function. Similarly, since
the integrands of J(ν) are real and even, J(ν) is also real
and even. Thus, e−CJ(ν) is real and even. By the dominated
convergence theorem, the integrals and the limits of (14), (16),
and (17) can be interchanged. Then it is easy to verify that

lim
ν→∞ e−Rψν(τ) = e−R(b−a)

and
lim
ν→∞ e−CJ(ν) = e−C[b−ae−R(b−a)].

If a = 0, then L0,0(ν) converges to zero by the Riemann–
Lebesgue Lemma.
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