ECE 730 Notes

John A. Gubner
University of Wisconsin–Madison

September 12, 2018
1

Random variables

*** Read Section 1.4 of the textbook before studying the following material. ***

1.1. The real numbers and extended real numbers

We denote the set of all real numbers by $\mathbb{R} := (-\infty, \infty)$, and we denote the extended real numbers by $\overline{\mathbb{R}} := [-\infty, \infty] = \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. The extended real numbers behave pretty much as you would expect, but there are two things to watch out for. First, we always take $\pm \infty \cdot 0 = 0$. Second, the expressions $\infty - \infty$ and $-\infty + \infty$ are not defined, and we must guard against them in our calculations.

1.2. Random variables and cumulative distribution functions

Suppose X is an extended-real-valued function defined on the sample space Ω. (Since $\mathbb{R} \subset \overline{\mathbb{R}}$, a real-valued function is a special case of an extended-real-valued function.) We say that X is a random variable if

$$\{ \omega \in \Omega : X(\omega) \leq x \} \in \mathcal{F}, \quad \text{for all real } x.$$ \hfill (1.1)

Example 1.1. Let A be any subset of Ω and put $X := 1_A$, where 1_A denotes the indicator function of the set A; i.e., $1_A(\omega) := 1$ for $\omega \in A$ and $1_A(\omega) := 0$ for $\omega \notin A$. How do the sets in (1.1) vary with x? Determine conditions under which X is a random variable.

Solution. To begin, first note that $1_A(\omega) \leq 1$ for all $\omega \in \Omega$. Second, $0 \leq 1_A(\omega) < 1$ if and only if $1_A(\omega) = 0$, which happens if and only if $\omega \notin A$. Third, $1_A(\omega)$ is never negative. Hence,

$$\{ \omega \in \Omega : 1_A(\omega) \leq x \} = \begin{cases} \Omega, & x \geq 1, \\ A^c, & 0 \leq x < 1, \\ \emptyset, & x < 0. \end{cases}$$

This shows that 1_A is a random variable if and only all of the sets Ω, A^c, and \emptyset belong to \mathcal{F}. Since Ω and \emptyset always belong to \mathcal{F}, and since $A^c \in \mathcal{F}$ if and only if $A \in \mathcal{F}$, we conclude that 1_A is an random variable if and only if $A \in \mathcal{F}$.

It is common practice in probability theory to drop the ωs and use the shorthand $\{X \leq x\}$ in place of $\{\omega \in \Omega : X(\omega) \leq x\}$. However, it is important to keep in mind that $\{X \leq x\}$ always denotes a subset of the sample space Ω.

If X is a random variable; i.e., the probabilities of the sets in (1.1) are defined, then we further define the **cumulative distribution function** (cdf) of X by

$$F(x) := P(\{\omega \in \Omega : X(\omega) \leq x\}), \quad x \in \mathbb{R}.$$

Using our just-defined shorthand, we could write $F(x) = P(\{X \leq x\})$. However, we use the further shorthand $F(x) = P(X \leq x)$, always keeping in mind that this refers to the probability of a subset of Ω.

Observe that using one of the limit properties of probability, we can write $P(X < \infty) = P(\bigcup_{n=1}^{\infty} \{X \leq n\}) = \lim_{N \to \infty} P(X \leq N) = \lim_{N \to \infty} F(N)$.

Hence, $P(X = \infty) = 1 - \lim_{N \to \infty} F(N)$. Similarly,

$$P(X > -\infty) = P(\bigcup_{n=1}^{\infty} \{X > -n\}) = \lim_{N \to \infty} P(X > -N) = \lim_{N \to \infty} 1 - F(-N),$$

and so $P(X = -\infty) = \lim_{N \to \infty} F(-N)$. We can now write

$$1 = P(\Omega) = P(X \in \mathbb{R}) = P(X = -\infty) + P(X \in \mathbb{R}) + P(X = \infty).$$

We say X is real valued **with probability one** (w.p.1.) if $P(X \in \mathbb{R}) = 1$. This happens if and only if $F(N) \to 1$ and $F(-N) \to 0$, which corresponds to $P(X = \infty) = 0$ and $P(X = -\infty) = 0$, respectively.

Remark. Even though we do not define $F(\pm \infty)$, the values of $P(X = \pm \infty)$ are determined by the values of $F(x)$ for finite values of x using the limits above.

1.2.1. Equivalent characterizations of random variables

Since $\{X > x\} = \{X \leq x\}^c$, and since $\{X \leq x\} = \{X > x\}^c$, it makes no difference if we replace \leq by $>$ in the definition of a random variable in (1.1). In fact, we can replace \leq by $<$. To see this, write

$$\{X < x\} = \bigcup_{n=1}^{\infty} \{X \leq x - 1/n\}. \quad (1.2)$$

From this equation, we see that if (1.1) holds, then $\{X < x\} \in \mathcal{A}$ for all real x. Conversely, it can be shown that if $\{X < x\} \in \mathcal{A}$ for all real x, then (1.1) holds.
2

Expectation

2.1. Definitions

If a random variable takes only finitely many distinct real values, we say it is a **simple random variable**. For a nonnegative simple random variable X taking distinct values x_1, \ldots, x_m, we define its *expectation*

$$E[X] := \sum_{k=1}^{m} x_k P\left(\{\omega \in \Omega : X(\omega) = x_k\}\right), \quad \text{(2.1)}$$

or using our shorthand,

$$E[X] := \sum_{k=1}^{m} x_k P(X = x_k).$$

In order for this expression to make sense, it is necessary that the sets $\{X = x_k\} \in \mathcal{A}$. Fortunately, the assumption that X is a random variable implies each

$$\{X = x_k\} = \{X \leq x_k\} \setminus \{X < x_k\}$$

is an event.

Example 2.1. Consider the function $a1_A(\omega)$, where a is a positive constant and $A \in \mathcal{A}$. This function takes the two distinct values zero and a. Hence, $E[a1_A] = aP(A)$.

Given an arbitrary nonnegative random variable Y, we put

$$E[Y] := \sup\{E[X] : X \text{ is simple with } 0 \leq X \leq Y\}.$$

Alternative notation for $E[Y]$ includes

$$\int Y \, dP, \quad \int Y(\omega) \, dP(\omega), \quad \text{and} \quad \int Y(\omega) \, P(d\omega). \quad \text{(2.2)}$$

We also write $\int_A Y \, dP$ for $E[Y1_A]$.

Example 2.2 (approximation by simple random variables). Here is an easy way to construct a sequence of simple random variables X_n with $0 \leq X_n \leq Y$ and $X_n \to Y$. Fix any positive integer n. Start by breaking the interval $[0, \infty]$ into two parts, $[0, n)$ and $[n, \infty]$. Then break $[0, n)$ into subintervals of length $1/2^n$. Notice that there are $n2^n$ such subintervals. When $Y(\omega) \in [n, \infty]$, put $X_n(\omega) := n$, and when $Y(\omega) \in [(k-1)/2^n, k/2^n)$, put $X_n(\omega) := (k-1)/2^n$. In each case, the value of $X_n(\omega)$ is taken as the left endpoint of the
2.2. Properties of expectation

To see this, observe that since E is monotonic implies X is simple with $0 \leq X \leq Y$, and so $X_n(\omega) = n \rightarrow \infty = Y(\omega)$. If $Y(\omega)$ is finite, then for each $n \geq Y(\omega)$, there will be some k, depending on n, with $(k-1)/2^n \leq Y(\omega) < k/2^n$. Since $X_n(\omega) = (k-1)/2^n$, the error between $Y(\omega)$ and $X_n(\omega)$ is at most $1/2^n$, which tends to zero as $n \rightarrow \infty$.

Remark. Because Y is assumed to be a random variable, the sets $B_n = \{Y \geq n\}$ and $A_k = \{(k-1)/2^n \leq Y < k/2^n\}$ are events; i.e., belong to the σ-field \mathcal{F}.

Example 2.3. Show that if $Y \geq 0$ and $P(Y > 0) = 0$, then $E[X_n] = 0$ for each n.

Solution. The term with $k = 1$ in (2.3) is zero. For $k = 2, \ldots, n2^n$, we have $A_k \subset \{Y > 0\}$, and so $0 \leq P(A_k) \leq P(Y > 0) = 0$. Similarly, $B_n \subset \{Y > 0\}$ implies $P(B_n) = 0$.

2.2. Properties of expectation

Monotonicity. For arbitrary random variables Y_1 and Y_2 with $0 \leq Y_1 \leq Y_2$, $E[Y_1] \leq E[Y_2]$. To see this, first note that

$$\{X : X \text{ is simple with } 0 \leq X \leq Y_1\} \subset \{X : X \text{ is simple with } 0 \leq X \leq Y_2\}.$$

It then follows that

$$\sup\{E[X] : X \text{ is simple with } 0 \leq X \leq Y_1\} \leq \sup\{E[X] : X \text{ is simple with } 0 \leq X \leq Y_2\}.$$

Markov inequality. For a nonnegative random variable Y and a constant $a > 0$,

$$P(Y \geq a) \leq \frac{E[Y]}{a}.$$

To see this, observe that since

$$a1\{y \geq a\} \leq Y1\{y \geq a\} \leq Y,$$

monotonicity implies $E[a1\{y \geq a\}] \leq E[Y]$, or $aP(Y \geq a) \leq E[Y]$. To conclude, divide by a.

September 12, 2018
Example 2.4 (zero expectation). If a random variable X satisfies $P(X = 0) = 1$, then we say that $X = 0$ with probability one (w.p.1.). Equivalently, if $P(X \neq 0) = 0$, we say that $X = 0$ almost surely (a.s.). Show that if X is nonnegative and $E[X] = 0$, then $X = 0$ w.p.1.

Solution. Since $X \geq 0$, \(\{X \neq 0\} = \{X > 0\} \), and it suffices to show that $P(X > 0) = 0$. Next, observe that

\[
\{X > 0\} = \bigcup_{n=1}^{\infty} \{X > 1/n\}.
\]

Then by a limit property of probability,

\[
P(X > 0) = \lim_{N \to \infty} P(X > 1/N).
\]

By the Markov inequality, $P(X > 1/N) \leq P(X \geq 1/N) \leq N E[X] = 0$.

Example 2.5 (finite expectation). Show that if X is a nonnegative random variable and $E[X] < \infty$, then X is finite w.p.1. In other words, show that $P(X < \infty) = 1$.

Solution. We show that $P(X = \infty) = 0$. To see this, observe that

\[
\{X = \infty\} = \bigcap_{n=1}^{\infty} \{X > n\}.
\]

Then by a limit property of probability,

\[
P(X = \infty) = \lim_{N \to \infty} P(X > N).
\]

By the Markov inequality, $P(X > N) \leq E[X]/N$, which tends to zero as $N \to \infty$ on account of the assumption that $E[X] < \infty$.

Signed random variables

For a signed random variable Y, we define the positive and negative parts of Y by

\[
Y^+(\omega) := \begin{cases}
Y(\omega), & \text{if } Y(\omega) \geq 0, \\
0, & \text{if } Y(\omega) < 0,
\end{cases}
\]

and

\[
Y^-(\omega) := \begin{cases}
-Y(\omega), & \text{if } Y(\omega) < 0, \\
0, & \text{if } Y(\omega) \geq 0.
\end{cases}
\]

Notice that both Y^+ and Y^- are nonnegative random variables and satisfy

\[
Y(\omega) = Y^+(\omega) - Y^-(\omega) \quad \text{and} \quad |Y(\omega)| = Y^+(\omega) + Y^-(\omega).
\]

Hence,

\[
E[|Y|] = E[Y^+] + E[Y^-],
\]

by the additivity property for nonnegative random variables. We then define

\[
\]

provided at least one of the terms on the right is finite. Notice that both terms on the right are finite if and only if $E[|Y|] < \infty$. In this case, we say that Y is integrable.
Expectation

For a signed random variable there are three possibilities:
- \(E[Y] \) may not be defined because the above formula would involve the prohibited expression \(\infty - \infty \);
- \(E[Y] \) may be \(\pm \infty \);
- \(E[Y] \) may be a finite number. This happens if and only if \(Y \) is integrable.

General monotonicity. For random variables \(Y_1 \leq Y_2 \), \(E[Y_1] \leq E[Y_2] \), provided both expectations exist. (no proof)

General additivity. For random variables \(Y_1 \) and \(Y_2 \), \(E[Y_1 + Y_2] = E[Y_1] + E[Y_2] \), provided the right-hand side is not of the form \(\infty - \infty \) or \(-\infty + \infty \). (no proof)

Jensen inequality. Let \(\varphi \) be a convex function defined on an interval of the real line, and let \(Y \) be a random variable taking values in that interval. If \(E[|Y|] < \infty \), then
\[
E[\varphi(Y)] \geq \varphi(E[Y]),
\]
where the left-hand side may be \(+\infty \), but cannot be \(-\infty \). (no proof)

2.3. Distributions on the real line

So far we have been discussing extended real valued random variables. Now we restrict attention to real-valued random variables. Fortunately, a real-valued random variable \(X \) has the property that \(\{X \in B\} \in \mathcal{A} \) whenever \(B \) is a Borel subset of \(IR \). It is then easy to show that
\[
\mu(B) := P(\{X \in B\}) = P(X^{-1}(B)), \quad B \in \mathcal{B},
\]
defines a probability measure on \(IR \). This measure is called the distribution of the random variable.

Recall that a real-valued function \(g \) on \(IR \) is said to be measurable if \(\{x \in IR : g(x) \leq t\} \in \mathcal{B} \) for all real \(t \). We can develop integrals for functions \(g \) with respect to \(\mu \) just as we developed expectation for random variables. Common notation for the integral of \(g \) with respect to \(\mu \) includes (cf. (2.2))
\[
\int g \, d\mu, \quad \int g(x) \, d\mu(x), \quad \text{and} \quad \int g(x) \, \mu(dx).
\]
We also write \(\int_B g \, d\mu \) for \(\int g1_B \, d\mu \). All of the results for \(E \) have analogs for \(\int \cdots d\mu \).

Law of the unconscious statistician (LOTUS).
\[
E[g(X)] = \int g \, d\mu
\]
in the sense that if either side is defined, then so is the other and both sides are equal.

\(^a\)Recall that the collection of Borel sets, denoted by \(\mathcal{B} \), is the smallest \(\sigma \)-algebra containing all the open subsets of \(IR \).
2.3 Distributions on the real line

2.3.1. Probability mass functions

A probability distribution \(\mu \) is said to have a **probability mass function** if there is a sequence of real numbers \(p_k \) and a sequence of distinct real numbers \(x_k \) such that

\[
\mu(B) = \sum_k 1_B(x_k)p_k, \quad B \in \mathcal{B}.
\]

Taking \(B = \{x_i\} \) shows that \(\mu(\{x_i\}) = p_i \). Since \(\mu \) is a probability measure, this implies \(0 \leq p_i \leq 1 \). It can be shown that

\[
\int g \, d\mu = \sum_k g(x_k)p_k.
\]

It follows that if \(\mu \) is the distribution of a random variable \(X \), then we have the more familiar version of LOTUS,

\[
E[g(X)] = \sum_k g(x_k)p_k.
\]

2.3.2. Probability densities

A probability distribution \(\mu \) is said to have a **density** if there is a measurable function \(f \) such that

\[
\mu(B) = \int_B f(x) \, dx = \int_{-\infty}^{\infty} 1_B(x)f(x) \, dx, \quad B \in \mathcal{B}.
\]

Integrals \(dx \) are integrals with respect to Lebesgue measure. Lebesgue measure satisfies the first three properties of a probability measure on the Borel subsets of \(\mathbb{R} \). However, since the Lebesgue measure of an interval is defined to be its length, the measure of \(\mathbb{R} \) is infinite rather than one as would be the case for a probability measure on \(\mathbb{R} \). It can be shown that

\[
\int g \, d\mu = \int g(x)f(x) \, dx.
\]

In other words, if \(\mu \) is the distribution of a random variable \(X \), then we have the more familiar version of LOTUS,

\[
E[g(X)] = \int g(x)f(x) \, dx.
\]

\[b\] Consider the set \(N := \{x : f(x) < 0\} \). Then since \(\mu \) is a probability measure, \(\mu(N) \geq 0 \). On the other hand, from the integral formula, \(\mu(N) \leq 0 \). Therefore, \(\mu(N) = 0 \), and it follows that the Lebesgue measure of \(N \) is zero. We describe this condition by saying \(f \geq 0 \) almost everywhere (a.e.).
Index

a.e., see almost everywhere
a.s., see almost surely
almost everywhere. 7
almost surely. 5

Borel set. 6
cumulative distribution function. 2
distribution. 6
expectation. 3
extended real numbers. 1
indicator function. 1
integrable random variable. 5
Jensen inequality. 6
law of the unconscious statistician. 6
LOTUS, see law of the unconscious statistician
measurable function. 6
negative part of a function. 5
positive part of a function. 5
probability density. 7
probability mass function. 7
random variable. 1
 integrable. 5
 simple. 3
simple random variable. 3
w.p.1., see with probability one
with probability one. 2 5