Alternating Projections onto Convex Sets

Based on
References

Properties of projections

Lemma. Let C be a convex subset of an inner product space. Then $\hat{x} \in C$ satisfies

$$\|x - \hat{x}\| \leq \|x - y\| \text{ for all } y \in C \quad (1)$$

$$\iff \Re \langle x - \hat{x}, y - \hat{x} \rangle \leq 0 \text{ for all } y \in C. \quad (2)$$

Proof. \iff: Write

$$\|x - y\|^2 = \|(x - \hat{x}) + (\hat{x} - y)\|^2$$

$$= \|x - \hat{x}\|^2 + 2 \Re \langle x - \hat{x}, \hat{x} - y \rangle + \|\hat{x} - y\|^2$$

$$\geq \|x - \hat{x}\|^2$$

\Rightarrow: Suppose (1) holds. Then for any $y \in C$ and any $0 < \lambda < 1$, we can write

$$\|x - \hat{x}\|^2 \leq \|x - \{\hat{x} + \lambda(y - \hat{x})\}\|^2$$

$$= \|(x - \hat{x}) - \lambda(y - \hat{x})\|^2$$

$$= \|x - \hat{x}\|^2 - 2 \lambda \Re \langle x - \hat{x}, y - \hat{x} \rangle + \lambda^2 \|y - \hat{x}\|^2$$

Rearranging and using the fact that $\lambda > 0$, $\Re \langle x - \hat{x}, y - \hat{x} \rangle \leq \lambda \|y - \hat{x}\|^2/2$.

Since $\lambda > 0$ can be arbitrarily small, (2) follows
Suppose \(C \) is a closed convex subset of a Hilbert space \(\mathcal{X} \). By the Projection Theorem, for every \(x \in \mathcal{X} \), there exists an \(\hat{x} \in C \) satisfying (1). The projection operator onto \(C \) is defined by

\[
P_x = \hat{x}.
\]

Note: If \(C \) is not a subspace, \(P \) is not linear!!!

Proposition. If \(C \) is a closed convex subset of a Hilbert space \(\mathcal{X} \), then for every \(x_1, x_2 \in \mathcal{X} \),

\[
\| \hat{x}_1 - \hat{x}_2 \|^2 \leq \text{Re} \left< x_1 - x_2, \hat{x}_1 - \hat{x}_2 \right> \tag{3}
\]

and

\[
\| P_{x_1} - P_{x_2} \| \leq \| x_1 - x_2 \|. \tag{4}
\]

Proof. First note that (3) \(\Rightarrow \) (4) by Cauchy-Schwarz.

To prove (3), we first observe that for all \(y \in C \),

\[
\text{Re} \left< x_1 - \hat{x}_1, y - \hat{x}_1 \right> \leq 0 \tag{5}
\]

and

\[
\text{Re} \left< x_2 - \hat{x}_2, y - \hat{x}_2 \right> \leq 0 \tag{6}
\]

In (5) set \(y = \hat{x}_2 \) and in (6) take \(y = \hat{x}_1 \). Then

(5) becomes
\[
\text{Re} \left\langle x_1 - \hat{x}_1, \hat{x}_2 - \hat{x}_1 \right\rangle \leq 0, \tag{7}
\]

and (6) becomes
\[
\text{Re} \left\langle \hat{x}_2 - x_2, \hat{x}_2 - \hat{x}_1 \right\rangle \leq 0. \tag{8}
\]

Adding (7) and (8) yields
\[
\text{Re} \left\langle (x_1 - x_2) - (\hat{x}_1 - \hat{x}_2), \hat{x}_2 - \hat{x}_1 \right\rangle \leq 0. \tag{9}
\]

Rearranging (9) yields (3).

Definition. A mapping \(T : X \to Y \), where \(X \) and \(Y \) are normed vector spaces, is nonexpansive if

\[
\| T x_1 - T x_2 \| \leq \| x_1 - x_2 \|, \quad \forall x_1, x_2 \in X.
\]

By (4), we see that projection operators are nonexpansive. Note also that nonexpansive operators are uniformly continuous.
Relaxed Projection Operators

Let C be a closed convex subset of a Hilbert space X. Let P be the corresponding projection operator.

Define

$$Tx = \lambda(Px) + (1-\lambda)x$$

$$= x + \lambda(\hat{x} - x)$$

For $0 \leq \lambda \leq 1$, Tx is a convex combination of x and \hat{x}.

Example:

![Diagram](image)

Tx for $\lambda > 1$

Lemma For $0 < \lambda < 2$, $Tx = \lambda(Px) + (1-\lambda)x$ is nonexpansive.

Proof. For $0 < \lambda \leq 1$, write

$$||Tx - Ty|| = ||\lambda(Px - Py) + (1-\lambda)(x - y)||$$

$$\leq \lambda ||Px - Py|| + (1-\lambda)||x - y||,$$ \quad \text{triangle ineq.}

$$\leq \lambda||x - y|| + (1-\lambda)||x - y||,$$ \quad \text{since P is nonexp.}

$$= ||x - y||.$$

For $1 < \lambda < 2$, we proceed as follows. Write

$$||Tx - Ty||^2 = \lambda^2||Px - Py||^2 + (1-\lambda)^2||x - y||^2$$

$$+ 2(1-\lambda)^2 \Re \langle x - y, Px - Py \rangle$$

$$< 0$$
By (3), $\Re \langle x-y, P_k-P_y \rangle \geq \|P_k-P_y\|^2$. Hence,

\[
\|Tx-Ty\|^2 \leq \lambda^2 \|P_x-P_y\|^2 + (1-\lambda)^2 \|x-y\|^2 \\
+ 2\lambda(1-\lambda) \|P_x-P_y\|^2 \\
= \lambda(2-\lambda) \|P_x-P_y\|^2 + (1-\lambda)^2 \|x-y\|^2 \\
\leq \lambda(2-\lambda) \|x-y\|^2 + (1-\lambda)^2 \|x-y\|^2 \\
= \{2\lambda - \lambda^2 + 1 - 2\lambda + \lambda^2 + \lambda^3 \|x-y\|^2 \\
= \|x-y\|^2.
\]

Suppose C_1, \ldots, C_m are closed convex subsets of a Hilbert space X. Let P_1, \ldots, P_m be the corresponding projection operators. Let $0 < \lambda_i < 2$, $i = 1, \ldots, m$. Let

\[T_i = I + \lambda_i (P_i - I), \]

where I is the identity operator on X; i.e. $Ix = x$, $x \in X$. By the last lemma, each T_i is a nonexpansive, relaxed projection operator. Define

\[T = T_m T_{m-1} \cdots T_2 T_1, \]

In other words,

\[T(x) = T_m (T_{m-1} (\cdots (T_2 (T_1 (x)) \cdots)). \]
Since each T_i is nonexpansive, so is $T=T_m \cdots T_1$.

Define

$$C_0 \overset{\circ}{=} \bigcap_{i=1}^{m} C_i$$

and

$$\mathcal{T} \overset{\Delta}{=} \{ x \in X : T x = x \}.$$

We call \mathcal{T} the set of fixed points of T.

Lemma. $C_0 \subset \mathcal{T}$.

Proof. Suppose $x \in C_0$. Since $C_0 \subset C_1$, $x \in C_1$. Since $x \in C_1$, $P_i x = x$. Since $P_i x = x$, $T_i x = x$. So,

$$T x = T_m(\cdots (T_i(T_i x))\cdots)$$

$$= T_m(\cdots (T_2 x)\cdots).$$

Since $x \in C_0 \subset C_2$, $T_2 x = x$. Continuing in this way,

$T x = x$. Thus $C_0 \subset \mathcal{T}$.

We show later that in fact $C_0 = \mathcal{T}$ if $C_0 \neq \emptyset$.

We also show later that \mathcal{T} has the following property.

Definition. A mapping $T : X \rightarrow X$ is asymptotically regular if

$$T^n x - T^{n+1} x \rightarrow 0.$$
The following theorem shows that if $T = T_m \cdots T_1$, and if T has a fixed point, then for all $x \in X$, $T^n x$ converges to a fixed point of T; that is, $T^n x$ converges to an element of $T = C_0$. In general, the fixed point to which $T^n x$ converges will not be the projection of x onto C_0.

Theorem. (Opial) [Finite-dimensional version].
Let C be a closed convex subset of a finite-dimensional inner product space X. (In our application to alternating projections, we take $C = X$.) Let $T : C \to C$ be any nonexpansive, asymptotically regular mapping. Let T denote the set of fixed points of T. Assume $T \neq \emptyset$. Then for every $x \in C$, $T^n x$ converges to a point in T.

Proof: For every $y \in T$, $Ty = y$. Since T is nonexpansive, for $y \in T$,

$$\|T^n x - y\| = \|T^{n+1} x - Ty\| \leq \|T^n x - y\|. \quad (10)$$

Thus,

$$\|T^n x - y\| \leq \|x - y\|, \quad \text{all } n \geq 1.$$

In particular,

$$\|T^n x\| \leq \|x - y\| + \|y\|. \quad (11)$$

Since $T = C_0$, T has a fixed point $\Rightarrow C_0 \neq \emptyset$.

and hence \(\{T^n x\} \) is a bounded sequence in a finite-dimensional inner product space. Therefore, there is a subsequence \(\{T^{n_k} x\}_{k=1}^{\infty} \) and a point \(y_0 \in X \) with \(T^{n_k} x \to y_0 \) as \(k \to \infty \). Since \(T^{n_k} x \in C \), and \(C \) is closed, \(y_0 \in C \).

We claim \(y_0 \) is a fixed point of \(T \); i.e., \(y_0 \in T \).

Since \(T \) is asymptotically regular,
\[
T^{n_k} x - T^{n_k+1} x \to 0.
\]
Rewrite this as
\[
(I-T)(T^{n_k} x) \to 0.
\]
It is readily verified that \(I-T \) is continuous; hence,
\[
(I-T)(T^{n_k} x) \to (I-T)(y_0).
\]
Thus, \((I-T)(y_0) = 0 \), and so \(Ty_0 = y_0 \).

We now show that \(T^n x \to y_0 \). Since \(y_0 \in T \), we can take \(y=y_0 \) in (10). This shows that the sequence of real numbers \(\{\|T^n x - y_0\|\} \) is nonincreasing and bounded below. By the monotonic sequence property,
\[
\lim_{n \to \infty} \|T^n x - y_0\| \text{ exists.}
\]
Now, \(\{\|T^{n_k} x - y_0\|\}_{k=1}^{\infty} \) is a subsequence of \(\{\|T^n x - y_0\|\} \).

The assumption \(T \neq \emptyset \) is crucial, since \(T \neq \emptyset \) implies there is a \(y \) satisfying (11).
Hence,
\[\lim_{n \to \infty} \|T^n x - y_0\| = \lim_{k \to \infty} \|T^k x - y_0\| = 0 \text{ since } T^k x \to y_0. \]

But now \(\lim_{n \to \infty} \|T^n x - y_0\| = 0 \) implies \(T^n x \to y_0 \).

Proposition. Let \(0 < \lambda_i < 2 \), \(i = 1, \ldots, m \). Assume \(C_0 = \bigcap_{i=1}^m C_i \neq \emptyset \).

Then, letting \(T_i = I + \lambda_i (P_i - I) \) and \(T = T_m \cdots T_1 \),

\[\|x - T_i x\|^2 \leq \frac{\lambda_i}{2 - \lambda_i} \left(\|x - y\|^2 - \|T_i x - y\|^2 \right), \quad \forall y \in C_i, \quad (12) \]

and

\[\|x - Tx\|^2 \leq b_m 2^{m-1} \left(\|x - y\|^2 - \|Tx - y\|^2 \right), \quad \forall y \in C_0, \quad (13) \]

where \(b_m = \max_{1 \leq i \leq m} \left\{ \lambda_i / (2 - \lambda_i) \right\} \).

Further, \(C_0 = \bigcap_{i=1}^m C_i \).

Proof. We first verify (12). We begin with the observation that

\[\text{Re} \left< x - P_i x, y - P_i x \right> - \|x - P_i x\|^2 \]

\[= \text{Re} \left< x - P_i x, (y - P_i x) - (x - P_i x) \right> \]

\[= \text{Re} \left< x - P_i x, y - x \right> \]

\[= \text{Re} \left< x - y, P_i x - x \right>, \quad 2 "-" \text{ signs } + \text{ a complex conjugate.} \]

(14)
We next observe that

\[
\| T_i x - y \| ^2 = \| x - y \| ^2 + 2 \lambda_i \Re \langle x - y, P_i x - x \rangle + \lambda_i^2 \| P_i x - x \| ^2
\]

\[
= \| x - y \| ^2 + 2 \lambda_i \left(\Re \langle x - P_i x, y - P_i x \rangle - \| x - P_i x \| ^2 \right)
+ \lambda_i^2 \| P_i x - x \| ^2, \quad \text{by (14)},
\]

\[
\leq \| x - y \| ^2 - \lambda_i (2 - \lambda_i) \| x - P_i x \| ^2 + 2 \lambda_i \Re \langle x - P_i x, y - P_i x \rangle
\]

\[
\leq \| x - y \| ^2 - \lambda_i (2 - \lambda_i) \| x - P_i x \| ^2
\]

\[
= \| x - y \| ^2 - \frac{2 - \lambda_i}{\lambda_i} \| x - T_i x \| ^2, \quad \text{(15)}.
\]

where the last step follows because \(\| x - T_i x \| ^2 = \lambda_i^2 \| x - P_i x \| ^2 \).

Rearranging (15) yields (12).

The next step is to prove (13) by induction on \(m \).

The case \(m = 1 \) is covered by (12). For \(m \geq 2 \), define \(K = T_{m-1} \cdots T_1 \). Then \(T = T_m K \). The induction hypothesis is expressed in terms of \(K \) by

\[
\| x - K x \| ^2 \leq \sum_{i=1}^{m-1} 2^{m-2} \| x - y \| ^2 - \| K x - y \| ^2, \quad y \in \bigcap_{i=1}^{m-1} C_i.
\]

Before continuing, we recall the inequality \((u + v)^2 \leq 2(u^2 + v^2)\).
This is derived by writing $0 \leq (u-v)^2 = u^2 - 2uv + v^2$, which implies $2uv \leq u^2 + v^2$. From this, $(u+v)^2 = u^2 + 2uv + v^2 \leq u^2 + (u^2 + v^2) + v^2$.

Fix $y \in \bigcap_{i=1}^{m} C_i$. Then

$$
\|x - Tx\|^2 = \|x - Kx + Kx - Tx\|^2 \\
\leq \left(\|x - Kx\|^2 + \|Kx - Tx\|^2 \right), \text{ by the } \Delta \text{ ineq.} \\
\leq 2 \left(\|x - Kx\|^2 + \|Kx - Tx\|^2 \right) \\
\leq 2 \left(\|x - Kx\|^2 + 2^{m-2} \|Kx - Tx\|^2 \right).
$$

(17)

Now,

$$
\|Kx - Tx\|^2 = \|(Kx) - Tm(Kx)\|^2 \\
\leq \frac{\lambda_m}{2 - \lambda_m} \left(\|(Kx) - y\|^2 - \|Tm(Kx) - y\|^2 \right),
$$

by applying (12) with $i = m$, and Kx in place of x

$$
\leq b_m \left(\|Kx - y\|^2 - \|T_x - y\|^2 \right).
$$

(18)

Substituting (16) and (18) into (17) yields

$$
\|x - T_x\|^2 \leq 2 \left(b_{m-1} 2^{m-2} \left[\|x - y\|^2 - \|Kx - y\|^2 \right] \\
+ 2^{m-2} b_m \left[\|Kx - y\|^2 - \|T_x - y\|^2 \right] \right)
$$

$$
\leq 2 \left(b_m 2^{m-2} \left[\|x - y\|^2 - \|T_x - y\|^2 \right] \right),
$$

which is exactly (13).
We conclude the proof of the Proposition by showing that \(C_0 = T \). Recall that on p. 9 we showed that \(C_0 \subset T \). To show \(T = C_0 \), we proceed as follows. Fix \(x \in T \). If we can show that \(T_i x = x \) for each \(i \), then \(P_i x = x \) for each \(i \). Then \(P_i x = x \) implies \(x \in C_i \), and thus \(x \in \bigcap_{i=1}^{m} C_i = C_0 \).

We first show \(T_i x = x \). Since we assumed \(C_0 \neq \emptyset \), there is a \(y \in C_0 \). For such \(y \), \(T_y = y \) (since \(C_0 \subset T \)). Write

\[
\|x - y\| = \|T x - T y\| \leq \|T_i x - T_i y\|,
\]

since \(T_m \cdots T_2 \) is nonexpansive,

\[
= \|T_i x - y\|, \text{ since } T y = y \text{ for } y \in C_0,
\]

\[
= \|T x - T_i y\|,
\]

\[
\leq \|x - y\|, \text{ since } T_i \text{ is nonexpansive}.
\]

Thus, \(\|x - y\| = \|T_i x - y\| \). Applying this in (12) yields \(T x = x \).

To prove \(T_j x = x \) in general, we use induction on \(j \). Fix \(x \in T \), and suppose \(T_i x = x \) for \(i = 1, \ldots, j-1 \). Then \(x \in \bigcap_{i=1}^{j-1} C_i \).

Write

\[
\|x - y\| = \|T x - T y\| = \|T_{m \cdots T_{j+1}} T_j x - T_{m \cdots T_{j+1}} T_{j-1} y\|
\]

since \(x \in \bigcap_{i=1}^{j-1} C_i \Rightarrow T_{j-1} \cdots T_i x = x \), by the induction hypothesis.

\[
\leq \|T_j x - T_j y\|, \text{ since } T_m \cdots T_{j+1} \text{ is nonexpansive}.
\]

\[
= \|T_j x - y\|, \text{ since } y \in C_0
\]

\[
= \|T_j x - T_j y\|
\]

\[
\leq \|x - y\|
\]

Thus, \(\|x - y\| = \|T_j x - y\| \). By (12), \(T_j x = x \). This completes the induction. \(\square \)
Corollary. \(T = T_1 \cdots T_n \) is asymptotically regular.

Proof. We must show that \(T^n x - T^{n+1} x \to 0 \). This will follow immediately if we show that
\[
\sum_{n=0}^{\infty} \| T^n x - T^{n+1} x \|^2 < \infty.
\] (19)

To this end, replace \(x \) with \(T^n x \) in (13). Then
\[
\| T^n x - T^{n+1} x \|^2 \leq b_m 2^{m-1} \left(\| T^n x - y \|^2 - \| T^{n+1} x - y \|^2 \right).
\]

For \(N \geq 2 \),
\[
\sum_{n=0}^{N-1} \| T^n x - T^{n+1} x \|^2 \leq b_m 2^{m-1} \left(\| x - y \|^2 - \| T^N x - y \|^2 \right) \leq b_m 2^{m-1} \| x - y \|^2.
\]

Letting \(N \to \infty \),
\[
\sum_{n=0}^{\infty} \| T^n x - T^{n+1} x \|^2 \leq b_m 2^{m-1} \| x - y \|^2 < \infty.
\]

Remark. Any mapping satisfying (19) is called a reasonable wanderer.
Relaxed Projections onto Subspaces

We consider the special case in which every \(C_i \) is a closed subspace of a Hilbert space. We begin with a preliminary Lemma.

Lemma. Let \(M \) be a closed subspace of a Hilbert space \(\mathbb{H} \), and let \(P \) denote the corresponding projection operator. Then (i) \(P \) is linear, (ii) \(P \) is bounded, and (iii) \(P \) is self adjoint.

Proof. (i) follows by the orthogonality principle and by the uniqueness of the projection. (ii) follows by writing
\[
\|x\|^2 = \|x - \hat{x} + \hat{x}\|^2 = \|x - \hat{x}\|^2 + \|\hat{x}\|^2 \geq \|\hat{x}\|^2 = \|Px\|^2.
\]
To prove (iii), write
\[
\langle Px, y \rangle = \langle \hat{x}, y \rangle = \langle \hat{x}, \hat{y} + (y - \hat{y}) \rangle = \langle \hat{x}, \hat{y} \rangle = \langle \hat{x} + (x - \hat{x}), \hat{y} \rangle = \langle x, \hat{y} \rangle = \langle x, Py \rangle.
\]

The next theorem, which does not rely on Opial's Theorem, shows that if each \(C_i \) is a closed subspace, then if \(T = T_m \cdots T_1 \), \(T^n x \) converges to \(P_0 x = \) the projection of \(x \) onto \(C_0 = \bigcap_{i=1}^m C_i. \)
Theorem. Let $C_0 = \bigcap_{i=1}^{m} C_i$, where each C_i is a closed subspace of a Hilbert space X. Let P_i, $i=0,\ldots,m$, denote the corresponding projection operator. For $i=1,\ldots,m$, let $0 < \lambda_i < 2$, and let $T_i = I + \lambda_i (P_i - I)$. Set $T = T_m \cdots T_1$. Then for every $x \in X$, $T^nx \to P_0 x$.

Proof. We begin by pointing out that since each C_i is a subspace, so is C_0. Hence C_0 contains the zero vector. Thus, we can apply the Proposition on p. 12. In particular, we obtain $C_0 = \mathcal{T}$.

Next, since P_i is linear, bounded, and self-adjoint, so is T_i. It follows that $T = T_m \cdots T_1$ is linear, bounded, and satisfies $T^* = T_1 \cdots T_m$.

Hence, observe that our proof that $C_0 = \mathcal{T}$ also shows that $x \in C_0 \iff T^*x = x$.

Now, by the Corollary on p. 16, T is asymptotically regular. Hence, since T^n is linear,

$$T^n[(I-T)(x)] = T^n x - T^{n+1} x \to 0.$$ \hspace{1cm} (20)

Thus, if $y = (I-T)(x)$ for some x, $T^ny \to 0$. In other words, $T^ny \to 0$ for all $y \in \text{range of } I-T$. Since $I-T$ is a bounded linear operator on a Hilbert space,

$$\text{range of } I-T = \overline{\text{ker}(I-T)^*} = \overline{\text{ker}(I-T^*)} = \overline{\text{ker}(I-T^*)}.$$
Since \(x \in C_0 \iff T^*x = x \iff (I - T^*)(x) = 0 \iff x \in \ker(I - T^*) \), we see that \(C_0 = \ker(I - T^*) \). Thus

\[
\mathcal{X} = C_0 \oplus C_0^\perp
\]

\[
= C_0 \oplus \overline{\ker(I - T^*)}
\]

\[
= C_0 \oplus \mathcal{R}(I - T).
\]

Fix any \(x \in \mathcal{X} \). Then \(x \) can be uniquely written as

\[
x = P_0x + y,
\]

where \(y \in \mathcal{R}(I - T) \). Clearly, \(T(x) = P_0x + Ty \). In general, \(T^n x = P_0x + T^n y \). We will be finished if we can show that \(T^n y \to 0 \). To this end, recall that since \(y \in \mathcal{R}(I - T) \), there is a sequence \(y_k \in \mathcal{R}(I - T) \) with \(y_k \to y \). Let \(\epsilon > 0 \) be given. Choose \(k \) large enough that \(\|y - y_k\| < \epsilon/2 \). Since \(y_k \in \mathcal{R}(I - T) \), there is some \(x_k \) with \(y_k = (I - T)(x_k) \). Thus, for large \(n \),

\[
\|T^n y\| \leq \|T^n y_k - T^n y_k\| + \|T^n y_k\| \text{ Write since } y_k \in \mathcal{R}(I - T), \text{ let } n \text{ be large enough that } \|T^n y_k\| < \epsilon/2 \text{. Then }
\]

\[
\|T^n y\| \leq \|T^n y - T^n y_k\| + \|T^n y_k\| \leq \|y - y_k\| + \|T^n y_k\| \leq \|y - y_k\| + \epsilon/2 \leq \epsilon/2 + \epsilon/2 = \epsilon.
\]