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Analysis of the IEEE 802.15.3a
UWB Channel Model
John A. Gubner,Member, IEEE, and Kei Hao

Abstract— The IEEE 802.15.3a standards body has developed
a modification of the Saleh–Valenzuela (SV) multipath channel
model as the accepted channel model for ultra-wideband (UWB)
investigations. The SV model is a well-defined simulation model
that is straightforward to implement. However, since the model
as specified is not directly amenable to theoretical analysis, this
paper develops it as a two-dimensional “augmented cluster point
process” that is composed of three statistically independent com-
ponents that can be separately analyzed. For the IEEE 802.15.3a
model, simple closed-form expressions in terms of the channel
parameters are derived for: 1) The mean and variance of the
number of multipath arrivals in a time window as well as
the covariance of the numbers of arrivals in nonoverlapping
windows. 2) The mean and variance of the sum of the path
gains in a time window; it is shown that the sums of gains
in nonoverlapping windows are uncorrelated. 3) The expected
energy of a received UWB waveform. These are all special cases
of general integral formulas that are derived.

Index Terms— Augmented cluster process, point process,
Saleh–Valenzuela model, ultra-wideband.

I. I NTRODUCTION

ULTRA-WIDEBAND (UWB) communication systems
have recently generated intense interest due to their po-

tential for providing pervasive wireless connectivity [9], [12].
This potential is due to the fact that UWB can provide very
high bit rate, low-cost, low-power wireless communicationfor
a wide variety of systems; e.g., personal computer, TV, VCR,
CD, DVD, MP3 [1], [9]. Current systems, such as those based
on IEEE 802.11b, 11a, or 11g cannot do this because their
power consumption and cost are too high [1].

The Federal Communications Commission recently allo-
cated 7.5 GHz of spectrum for unlicensed commercial ultra-
wideband (UWB) communication systems. In order to develop
a common channel model, the IEEE 802.15.3a standards body
considered several possibilities and established a modification
of the Saleh–Valenzuela (SV) model [10] as the accepted
channel model for UWB investigations [1], [7]. The SV model
is a well-defined simulation model that is straightforward to
implement. Unfortunately, the usual specification of the SV
model is not directly amenable to theoretical analysis.

To address this difficulty, in this paper we develop the
SV/IEEE 802.15.3a model as a two-dimensional “augmented
cluster point process” that is composed of three statistically
independent components that can be separately analyzed.

In Section II we briefly introduce multipath channel models
and show that they can be thought of as two-dimensional point
processes. We then show that the response of such a channel
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to a waveform can be viewed as a shot-noise process driven
by the two-dimensional point process.

Since the SV/IEEE 802.15.3a channel model is a kind
of cluster point process, in Section III we give a brief in-
troduction to such processes. We also introduce augmented
cluster processes. We then foreshadow the construction of
the SV/IEEE 802.15.3a process to come in Section IV and
show how the process will decompose into three statistically
independent components.

The power of this framework is illustrated in Section V.
There we first give novel closed-form expressions for the
mean and variance of the number of multipath arrivals in a
time window. We also give the covariance of the number of
arrivals in nonoverlapping time windows; note that since the
IEEE 802.15.3a model is not a Poisson process, arrivals in
disjoint time windows are not independent. As a more compli-
cated example, we give novel closed-form expressions for the
mean and variance of the sum of the gains of paths arriving in a
specified time window. We also show that the sums of the gains
in nonoverlapping time windows are uncorrelated under the
IEEE 802.15.3a model. As the third example, we give novel
expressions for the covariance function of a received UWB
waveform under the IEEE 802.15.3a model. In particular, we
give a simple closed-form expression for the expected energy
in a received UWB waveform.

II. M ULTIPATH CHANNELS, POINT PROCESSES, AND SHOT

NOISE

Frequency-selective fading channels are well modeled by
time-varying impulse responses of the form [8]

hp(t,τ) =
Lp(t)

∑
l=1

βl (t)δ (τ − τl (t)),

wheret andτ are the observation time and the application time
of the impulse, respectively. The total number of multipath
components isLp(t), the{βl} are time-varying gains, and the
{τl (t)} are the path arrival times or delays. In this paper we
focus on indoor environments whose structure changes slowly
in comparison with the signaling rate. This suggests that we
use the corresponding time-invariant model

hp(τ) =
Lp

∑
l=1

βl δ (τ − τl ).

A. The Point-Process Connection

We can regard the pairs(τl ,βl ) as random points in two-
dimensional space as shown in Fig. 1. In other words, we
regard the pairs(τl ,βl ) as being points of atwo-dimensional
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Fig. 1. Delay-gain pairs(τl ,βl ) regarded as a two-dimensional point process.

point process. By definition, the delaysτl are nondecreasing.
However, the corresponding gains depend in part on the
different scatterers encountered by the radio waves. Hence,
although the general trend is to decrease, it is not monotonic.

Most prior work, e.g., [2], [3], [5], [10], [13], has always
regarded the delaysτl as a temporal point process and theβl as
marks. Although, the two perspectives are equivalent [4], [6],
we find the abstract multidimensional viewpoint much more
amenable to analysis.

B. The Shot-Noise Connection

The responseρ(t) of the channelhp(τ) to a signalξ (t) is

ρ(t) =
Lp

∑
l=1

βl ξ (t − τl ). (1)

Observe that if we putϕ t(τ,β ) := βξ (t − τ), then

ρ(t) =
Lp

∑
l=1

ϕ t(τl ,βl ).

Since for eacht, ρ(t) is a sum of values of a function evaluated
at random points,ρ(t) is called a shot-noise random variable.
A collection of such random variables indexed byt is called a
shot-noise process. This is an important observation because
so much theory is available to analyze shot-noise (or filtered
point processes), e.g., [4], [6], [11] to cite just a few.

C. The Clustering Phenomenon

We have now established that a multipath channel can be
modeled as a point process in a two-dimensional space, and
that its response to an input waveform has the structure of a
shot-noise process. What remains is to specify the distribution
of the times τl and the gainsβl . For example, Turinet
al. [13] considered modeling theτl as the arrival times of a
homogeneous Poisson process. Unfortunately, this model was
not consistent with the clustering of paths observed in their
data [10]. Other researchers have considered inhomogeneous
Poisson arrivals [2] and doubly-stochastic Poisson arrivals [3].
However, no one has taken the SV/IEEE 802.15.3a model,
which includes the clustering effect, and expressed it as a
cluster process in a two-dimensional space, as we do in the
next two sections.

III. C LUSTER PROCESSES

We give a brief introduction to cluster processes. Cluster
processes are superpositions of point processes that can be
described by the following two-step procedure. First, cluster
“centers” are placed at random locationsX0, X1, . . . in a space
X. Second, conditioned on the value of eachXi , another
collection of points{Yi j }

∞
j=1 is placed randomly “near”Xi . In

more abstract settings, the pointsYi j can belong to a spaceY
that is different fromX, but in the SV/IEEE 802.15.3a model,
Y = X = [0,∞)× (−∞,∞), where[0,∞) is the set in which the
path arrival times take values, and(−∞,∞) is the set in which
the path gains take values.

When A ⊂ X, we let Nc(A) denote the number of cluster
centersXi that lie in A. We can write this mathematically as
follows. Let IA(x) denote the indicator function ofA, IA(x) := 1
if x∈ A and IA(x) := 0 if x /∈ A. Then

Nc(A) :=
∞

∑
i=0

IA(Xi) (2)

counts the number of pointsXi that lie inA. We callNc(·) the
cluster-center process.

When B ⊂ Y, we let N∗(B) denote the number ofYi j that
lie in B, i.e.,

N∗(B) :=
∞

∑
i=0

∞

∑
j=1

IB(Yi j ). (3)

We call N∗(·) a cluster process.
The number of points from theith cluster that lie inB is

Nr(B|Xi) :=
∞

∑
j=1

IB(Yi j ). (4)

In the context of the SV/IEEE 802.15.3a model below, for each
i, the {Yi j }

∞
j=1 correspond to the (noninitial) rays arriving in

the ith multipath cluster. For this reason, we callNr(·|Xi) the
ith ray process. We can now write the total number of points
in B as the superposition

N∗(B) =
∞

∑
i=0

Nr(B|Xi).

If, as in the SV/IEEE 802.15.3a model, theNr(·|x) are inde-
pendent Poisson processes for differentx, we see thatN∗(·) is
conditionally a sum of Poisson processes and therefore con-
ditionally Poisson. In other words, in the SV/IEEE 802.15.3a
model,N∗(·) is a doubly-stochastic Poisson process.

A. Augmented Cluster Processes

Up to now, the points of the cluster-center process and
the points of the ray processes belong to different spacesX
and Y. In the case of the SV/IEEE 802.15.3a model and its
modifications,X = Y. It is therefore possible to include the
cluster centers as members of their corresponding clusters.
Mathematically, we put

N(B) := Nc(B)+N∗(B).

In the SV/IEEE 802.15.3a model,Nc(·) is a Poisson process,
and soN(·) is the sum of a Poisson process and a doubly-
stochastic Poisson process; note thatNc(·) and N∗(·) are not
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independent since the both depend on the cluster centersXi .
We call N(·) an augmented cluster process. Using (2) and
(3), we can write

N(B) =
∞

∑
i=0

IB(Xi)+
∞

∑
i=0

∞

∑
j=1

IB(Yi j ). (5)

If we defineYi 0 := Xi , we can write this more compactly as

N(B) =
∞

∑
i=0

∞

∑
j=0

IB(Yi j ).

If we replaceIB(y) by an arbitrary functionϕ(y), we obtain
the counting integral [11]

∫

Y
ϕ(y)N(dy) :=

∞

∑
i=0

∞

∑
j=0

ϕ(Yi j ). (6)

B. Decomposition of Augmented Cluster Processes

When we define the SV process below, it will be convenient
to write (5) as

N(B) = IB(X0)+
∞

∑
j=1

IB(Y0 j)+
∞

∑
i=1

IB(Xi)+
∞

∑
i=1

∞

∑
j=1

IB(Yi j ).

Recalling the definition ofNr in (4), we can rewrite (6) as
∫

Y
ϕ(y)N(dy) = ϕ(X0)+

∫
ϕ(y)Nr(dy|X0)

+
∞

∑
i=1

ϕ(Xi)+
∞

∑
i=1

∫
ϕ(y)Nr(dy|Xi). (7)

Now, the easiest way to construct a cluster process is to take
the cluster sequences{Yi j }

∞
j=1 to be independent (as a function

of i). This means that for distinct values ofx, the processes
Nr(·|x) are independent. In the SV/IEEE 802.15.3a model, not
only do we do have this, but we also have the initial cluster
centerX0 independent of the remaining cluster centers{Xi}

∞
i=1.

Furthermore,X0 is such thatNr(·|X0) does not depend onX0.
Hence, for the SV/IEEE 802.15.3a model, counting integrals
with respect toN(·) can be written as the sum of the three
statistically independent quantities,

ϕ(X0), Φr0 :=
∫

ϕ(y)Nr(dy|X0),

and

Φ⊗ :=
∞

∑
i=1

ϕ(Xi)+
∞

∑
i=1

∫
ϕ(y)Nr(dy|Xi).

Because these three parts are independent, they can be ana-
lyzed separately.

IV. T HE SV/IEEE 802.15.3A AUGMENTED CLUSTER

PROCESS

In the SV multipath channel model [10], paths arrive in
clusters.

A. Distribution of the Initial Paths of the Clusters

The initial path in the initial cluster arrives at time zero with
a gainG00 that has a density that we denote byf0,0(·).

Next, independent ofG00, the arrival times of the initial
paths of the remaining clusters are modeled as a homogeneous
Poisson process whose rate we denote byC. If the initial
path of such a cluster arrives at timeτ, its gain has a density
that we denote byfτ ,τ(·). The gains of different initial paths
are independent and can be considered marks of the Poisson
arrival times. Such a marked Poisson process is equivalent to
a two-dimensional Poisson process with intensity function[6,
Sec. 5.2]

λ1(τ,γ) := C fτ ,τ(γ), τ ≥ 0, γ ∈ IR. (8)

For future reference, on functionsϕ(τ,γ), we define the
linear functional

Λ̄1ϕ :=
∫ ∞

0

∫ ∞

−∞
ϕ(τ,γ)λ1(τ,γ)dγ dτ. (9)

B. Distribution of Noninitial Paths of the Clusters

Conditional on the arrival times of the initial paths of the
clusters, the arrival times of the noninitial paths in different
clusters, including the cluster that starts at time zero, are mod-
eled as independent homogeneous Poisson processes. Each of
these Poisson processes has the same rate, which we denote
by R. If one of these paths arrives at times and is part of
a cluster that started at timeτ, the arriving path gain has a
density that we denote byfτ ,s(·). These gains are independent
and can be considered marks of the Poisson arrival times of
the noninitial paths in the cluster. As mentioned above, such
a marked Poisson process is equivalent to a two-dimensional
Poisson process. Here the intensity function is1

λr(s,g|τ,γ) := R fτ ,s(g)I[τ ,∞)(s). (10)

Note thatλr(s,g|τ,γ) depends onτ but not γ.
For future reference, on functionsϕ(s,g), we define the

operator

(Λ̄rϕ)(τ,γ) :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)λr(s,g|τ,γ)dgds

= R
∫ ∞

τ

∫ ∞

−∞
ϕ(s,g) fτ ,s(g)dgds, (11)

which does not depend onγ. For this reason, we sometimes
write (Λ̄rϕ)(τ) to denote (11).

C. Assumptions about the Densities of the Gains

Following Saleh and Valenzuela [10, eq. (26)] and Batraet
al. [1, p. 2126], we assumefτ ,s(·) has a second moment
proportional to

e−τ/τ0e−(s−τ)/s0, (12)

1Since the intensity in (10) is zero fors< τ, the Poisson process starts at
time τ. This is in contrast to [1] and [10]. Their ray processes weredefined
by taking Poisson processes starting at time zero and then translating them
by the arrival time of the initial path in the cluster. The two constructions are
equivalent provided we adjust the definition offτ ,s(·). This is done in (12)
where we uses− τ; [1] and [10] would use onlys.
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whereτ0 ands0 are power-delay time constants. In [10],fτ ,s(·)
is taken to be a Rayleigh density. For the IEEE 802.15.3a
model in [1], a{±1}-valued-Bernoulli(1/2) mixture of log-
normal densities is used. This implies that under the model in
[1], fτ ,s(·) is even and therefore has zero mean. Note that our
second-order results in the next Section make no assumptions
about the densityfτ ,s(·) other than its having zero mean and
second moment proportional to (12).

V. SOME STATISTICS OF THEIEEE 802.15.3A MODEL

Let {(Si0,Gi0)}
∞
i=1 be the points of the two-dimensional

Poisson process with intensity functionλ1 in (8). Put Xi :=
(Si0,Gi0) for i ≥ 1, and putX0 := (0,G00), where G00 has
density f00(·) and is independent of the Poisson process. For
i = 0,1, . . . , given Xi = (τ,γ), let {(Si j ,Gi j )}

∞
j=1 be the points

of the two-dimensional Poisson process with intensity function
λr(·, ·|τ,γ) in (10). Put Yi j := (Si j ,Gi j ) for j ≥ 1, and put
Yi0 := Xi . Then the counting integral in (6) becomes

Φ :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N(ds×dg) =

∞

∑
i=0

∞

∑
j=0

ϕ(Si j ,Gi j ). (13)

Here are some choices ofϕ(s,g) that make counting integrals
so valuable:

• Number of Paths in a Time Window. If we takeϕ(s,g) =
I[a,b](s), then (13) becomes

∞

∑
i=0

∞

∑
j=0

I[a,b](Si j ).

This is the number of arrival timesSi j that fall in the time
window [a,b].

• Sum of Path Gains Arriving in a Time Window. If
ϕ(s,g) = gI[a,b](s), then (13) becomes

∞

∑
i=0

∞

∑
j=0

Gi j I[a,b](Si j ).

This adds up all the path gainsGi j whose path arrival
time Si j falls in the time window[a,b].

• Received UWB Waveforms. If we takeϕ(s,g) = gξ (t−s),
then (13) becomes

∞

∑
i=0

∞

∑
j=0

Gi j ξ (t −Si j ).

This is exactly the received UWB waveformρ(t) in (1)
modulo a renumbering of delays and gains to accommo-
date double subscripts. Here of course, the joint distribu-
tions of the delays and gains are completely specified.

The key to analyzingΦ in (13) is to break it into the sum of
the three independent terms,

Φ = ϕ(0,G00)+Φr0 +Φ⊗,

as discussed in Section III-B. Ifψ(s,g) is another function,
then we can

Ψ = ψ(0,G00)+Ψr0 +Ψ⊗

where these terms are independent and defined analogously.
Furthermore, thenoncorresponding terms ofΦ andΨ are also
independent.

A. Mean and Covariance of Number of Paths

Let 0 ≤ a < b ≤ c < d, and put ϕ(s,g) = I[a,b](s) and
ψ(s,g) = I[c,d](s). ThenΦ is the number of multipath arrivals
in the time window[a,b], andΨ is the number of multipath
arrivals in the time window[c,d]. Using (27), (29), and (33)
in Appendix C and the simplifications discussed there, it can
be shown that

E[Φ] = I[a,b](0)+R(b−a)+C(b−a)

[
1+R

b+a
2

]
. (14)

Similarly, using (30) and (35), it can be shown that

var(Φ) = R(b−a)

+C(b−a)

[
1+R

3b−a
2

+R2(b−a)

(
b+2a

3

)]
.

As for the covariance of the number of paths in disjoint
intervals, first write

cov(Φ,Ψ) = cov(ϕ(0,G00),ψ(0,G00))+ cov(Φr0,Ψr0)

+ cov(Φ⊗,Ψ⊗).

The first term on the right is zero since the intervals[a,b] and
[c,d] are disjoint. The second term is zero by the paragraph
containing (30). As forcov(Φ⊗,Ψ⊗), which is given by (34),
it is argued at the end of Appendix C that the first, second,
and fourth terms of (34) are zero. Evaluating the remaining
terms, it can be shown that

cov(Φ,Ψ) = CR(b−a)(d−c)[1+R(b+a)/2].

B. Mean and Covariance of Sum of Path Gains in a Time
Window

Let 0≤ a < b≤ c < d as above, and putϕ(s,g) = gI[a,b](s)
andψ(s,g) = gI[c,d](s). ThenΦ is the sum of the gains of the
multipath arrivals in the time window[a,b], andΨ is the sum
of the gains of the multipath arrivals in the time window[c,d].
Using (27), (29), and (33) along with the fact thatfτ ,s(·) has
zero mean, it is easy to show that

E[Φ] = 0.

Using (30), and again using the fact that(Λ̄rϕ)(τ) = 0 in (35),
we find that

var(Φ) = I[a,b](0)E[G2
00]+R

∫ b

a
E0,s[G

2]ds

+ Λ̄1(ϕ2)+ Λ̄1(Λ̄r(ϕ2)), (15)

where G is a generic random variable with densityf0,s(·).
On account of (12), (15) is computable in closed form. For
example, the integral term is2

Rs0(e
−a/s0 −e−b/s0), (16)

and
Λ̄1(ϕ2) = Cτ0(e

−a/τ0 −e−b/τ0). (17)

2Recall thatEτ ,s[G2] is proportional to (12). In (16)–(20), we have taken
this constant of proportionality to be one.
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A bit more work shows that the last term in (15) can also be
expressed in closed form. It is

Λ̄1(Λ̄r(ϕ2)) = CR
[
ζ (a,b,s0)ζ

(
0,a,s0τ0/(s0− τ0)

)

+s0ζ (a,b,τ0)

−s0ζ
(
a,b,s0τ0/(s0− τ0)

)
e−b/s0

]
, (18)

where
ζ (a,b,µ) := µ [e−a/µ −e−b/µ ].

If we put a = 0 and letb→ ∞, we find that

lim
b→∞

var(Φ) = 1+Rs0 +Cτ0 +CRs0τ0. (19)

Example 1:Suppose that we takea= 0 in the definition of
ϕ(s,g) = gI[a,b](s). We can then plot (15) as a function ofb
as shown in Fig. 2. For the plot we have used the parameters
of channel model CM3 in [1, Table II], namely

C = 0.0667, R= 2.1, τ0 = 14.0, and s0 = 7.9.

Hence, the limiting value ofvar(Φ) is about 34. At about
b= 33 ns, the variance has reached 90% of the limiting value.
Ninety percent of the limiting value is about 31. Note that by
(14), the expected number of paths in the time window[0,33]
is about 149. We also point out that the expected number of
multipath clusters in[a,b] is given by

E[Nc([a,b]× IR)] = E[I[a,b](0)+N1([a,b]× IR)]

= I[a,b](0)+Λ1([a,b]× IR)

= I[a,b](0)+C(b−a).

The expected number of clusters in[0,33] is about 3.
We conclude this subsection by writing

cov(Φ,Ψ) = cov(ϕ(0,G00),ψ(0,G00))+ cov(Φr0,Ψr0)

+ cov(Φ⊗,Ψ⊗).

The first term on the right is zero since the intervals[a,b] and
[c,d] are disjoint. The second term is zero by the paragraph
containing (30). As forcov(Φ⊗,Ψ⊗), it is argued at the end
of Appendix C that the first, second, and fourth terms of (34)
are zero. However, the remaining terms involveΛ̄rψ, which
is zero sinceEτ ,s[G] = 0. Thus,

cov(Φ,Ψ) = 0,

and we see that the sums of gains in different time windows
are uncorrelated.

Remark:If we are interested in the sum of thesquares of
the gains in an interval, we can takẽϕ(s,g) = g2I[a,b](s). If we
then use the formulas of Appendix C to computeE[Φ̃], we get
exactly (15). This is easy to see if we note that since the square
of an indicator is equal to itself,̃ϕ(s,g) = g2I[a,b](s) = ϕ(s,g)2;
e.g., Λ̄1(ϕ2) = Λ̄1ϕ̃. Now, since the limiting value of (15) is
given by (19), we see that the expected sum of squares of the
gains in[0,b] converges to (19). Thus, although the expected
number of paths in[0,b] grows quadratically inb by (14), the
energies of the paths decay so rapidly that the expected sum
of squares of gains over[0,b] levels off for largeb.

0 10 20 30 40 50 60 70 80 90
0

10

20
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40

b (ns)
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r(Φ

)

Fig. 2. Plot ofvar(Φ) in (15) as a function ofb with a = 0. The limiting
value of the curve is about 34. Ninety percent of this value isabout 31 and
is reached at aboutb = 33 ns.

C. Mean and Covariance of the UWB Channel Response

If we takeϕ(s,g) = gξ (t1−s) andψ(s,g) = gξ (t2−s), then
Φ = ρ(t1) and Ψ = ρ(t2), whereρ(t) is the UWB waveform
seen at the receiver. Using the formulas in Appendix C, it is
not hard to show that

E[ρ(t1)] = 0,

and

cov(ρ(t1),ρ(t2))

= E[G2
00]ξ (t1)ξ (t2)

+R
∫ ∞

0
ξ (t1−s)ξ (t2−s)E0,s[G

2]ds

+C
∫ ∞

0
ξ (t1− τ)ξ (t2− τ)Eτ ,τ [G

2]dτ

+CR
∫ ∞

0

∫ ∞

τ
ξ (t1−s)ξ (t2−s)Eτ ,s[G

2]dsdτ.

Note that this last double integral can be reduced to a single
integral by changing the order of integration and using (12).

Example 2:Let us compute the expected energy in the
received waveformρ(t). An easy calculation shows that

E

[∫ ∞

−∞
ρ(t)2dt

]
=

∫ ∞

−∞
E[ρ(t)2]dt

=
∫ ∞

−∞
cov(ρ(t),ρ(t))dt

= ‖ξ‖2{1+Rs0 +Cτ0 +CRs0τ0
}
, (20)

where ‖ξ‖2 :=
∫ ∞
−∞ ξ (t)2dt is the energy in the transmitted

waveform. Notice that (20) is proportional to (19). For the
situation in Example 1 and Fig. 2, we see that 90% of the
received signal energy is due to the gains of the paths that
arrive in the first 33 ns.

VI. CONCLUSION

We have presented a careful development of the
SV/IEEE 802.15.3a model as an augmented cluster point
process that is composed of three statistically independent
components that can be separately analyzed. We have shown
that important quantities of interest can be expressed as shot-
noise random variables driven by the augmented cluster pro-
cess, and we have derived formulas for means and variances
of such shot-noise random variables. Although the general
formulas involve double or even triple integrals, in many cases,
they can be expressed in closed form or simplified to involve
only single or double integral.
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APPENDIX A
POISSON-DRIVEN SHOT-NOISE RANDOM VARIABLES

Let N1(·) be a Poisson process on a spaceX [6, Ch. 2]. In
other words, forA⊂ X, N1(A) denotes the number of points
in A. The random variableN1(A) is Poisson, and we denote
its mean value by

Λ1(A) := E[N1(A)].

When N1(A) is regarded as a function ofA, N1(·) is a
nonnegative, integer-valued measure. WhenΛ1(·) is regarded
as a function ofA, we callΛ1(·) the mean measureof N1(·).

If v is a function onX, we define the shot-noise random
variable [6, Ch. 3]

V :=
∫

v(x)N1(dx). (21)

Then
E[V] =

∫
v(x)Λ1(dx),

where we assumev∈ L1(Λ1) both here and in (21) in order
that the integrals be well defined. If we also havew∈ L1(Λ1)
and define

W :=
∫

w(x)N1(dx),

then

E[VW] =
∫

v(x)w(x)Λ1(dx)

+

[∫
v(x)Λ1(dx)

][∫
w(x)Λ1(dx)

]
,

where we additionally assumev,w∈ L2(Λ1). We also have the
moment generating function

E[esV] = exp

[∫
[esv(x)−1]Λ1(dx)

]
,

wheres is complex and[esv(·)−1] ∈ L1(Λ1).
In order to write the preceding expectations in a more

compact form, we define the linear functional

Λ̄1v :=
∫

v(x)Λ1(dx) (22)

so that

E[V] = Λ̄1v, E[VW] = Λ̄1(v·w)+ Λ̄1v· Λ̄1w,

and
E[esV] = exp

[
Λ̄1

(
esv(·) −1

)]
.

APPENDIX B
ANALYSIS OF INTEGRALS WITH RESPECT TON1(·) AND

N×(·)

Doubly-Poisson Cluster Processes

Let N1(·) be the Poisson process defined in Appendix A with
mean measureΛ1(·) and the linear functional̄Λ1 defined in
(22). Let{Nr(·|x),x∈ X} be a family of independent Poisson
processes on a setY. Assume theNr(·|x) are independent of
N1(·). Denote the mean measure ofNr(·|x) by Λr(·|x).

We now define the cluster processN×(·) on Y by [4, Ch. 8]

N×(B) :=
∫

Nr(B|x)N1(dx), B⊂ Y.

BecauseN1(·) is a Poisson process,N×(·) is called aPoisson
cluster process [4]. Since Nr(·|x) is also Poisson, we call
N×(·) a doubly-Poisson cluster process. If we let N1 denote
theσ -field generated byN1(·), then conditioned onN1, N×(·)
is a sum of independent Poisson processes. Hence, conditioned
on N1, the mean measure ofN×(·) is

M×(B) := E[N×(B)|N1] =
∫

Λr(B|x)N1(dx).

In other words, because theNr(·|x) are independent Poisson
processes independent ofN1(·), N×(·) a doubly-stochastic
Poisson process with conditional mean measureM×(·). Thus,
N×(·) is both a cluster process and a doubly-stochastic Poisson
process.

Doubly-Poisson-Cluster-Driven Shot-Noise Random Variables

Let p and q be functions defined onY, and introduce the
cluster-process-driven shot-noise random variables

P :=
∫

p(y)N×(dy) and Q :=
∫

q(y)N×(dy).

Then

E[P|N1] =
∫

p(y)M×(dy) =
∫ [∫

p(y)Λr(dy|x)

]
N1(dx).

It is now convenient to introduce the operator notation

(Λ̄r p)(x) :=
∫

p(y)Λr(dy|x)

so that we can write

E[P|N1] =
∫

p(y)M×(dy) =
∫

(Λ̄r p)(x)N1(dx), (23)

which we recognize as a Poisson-driven shot-noise random
variable analogous to (21). A similar argument shows that

E[PQ|N1] =
∫

p(y)q(y)M×(dy)

+

[∫
p(y)M×(dy)

][∫
q(y)M×(dy)

]

=
∫

(Λ̄r p·q)(x)N1(dx)

+

[∫
(Λ̄r p)(x)N1(dx)

][∫
(Λ̄rq)(x)N1(dx)

]
.(24)

Since the integrals in (23) and (24) are Poisson-driven shot-
noise random variables, taking expectations yields

E[P] = Λ̄1(Λ̄r p)

and

E[PQ] = Λ̄1(Λ̄r(p·q))+ Λ̄1((Λ̄r p) · (Λ̄rq))

+ Λ̄1(Λ̄r p) · Λ̄1(Λ̄rq).

We also need that

E[VP|N1] = VE[P|N1]

= V
∫

(Λ̄r p)(x)N1(dx),

which is a product of Poisson-driven shot-noise random vari-
ables. Hence,

E[VP] = Λ̄1(v· (Λ̄r p))+ Λ̄1(v) · Λ̄1(Λ̄r p).
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Example 3:Using the foregoing formulas, it is easy to see
that

E[V +P] = Λ̄1(v)+ Λ̄1(Λ̄r p), (25)

and

cov(V +P,W+Q) = Λ̄1(v·w)+ Λ̄1(w · Λ̄r p)+ Λ̄1(v· Λ̄rq)

+ Λ̄1(Λ̄r(p·q))+ Λ̄1((Λ̄r p) · (Λ̄rq)).
(26)

APPENDIX C
ANALYSIS OF SV/IEEE 802.15.3A COUNTING INTEGRALS

As discussed in Section III-B, in the SV/IEEE 802.15.3a
model, counting integralsΦ such as (7) and (13) can be
written as the sum of three statistically independent terms,
Φ = ϕ(X0)+ Φr0 + Φ⊗. We now derive general formulas for
some statistics ofϕ(X0), Φr0, and Φ⊗. Motivated by the
specific counting integrals in Section V, we restrict attention
to integrandsϕ(s,g) of product form, sayϕ1(s)ϕ2(g).

The First Component

Under the SV/IEEE 802.15.3a model,ϕ(X0) = ϕ(0,G00).
For a product-form integrand, this becomesϕ1(0)ϕ2(G00).
Hence,

E[ϕ(X0)] = ϕ1(0)E[ϕ2(G00)]. (27)

If ϕ(s) = I[a,b](s) and a > 0, then this expectation is zero.
If ϕ2(g) is equal to g or g2 and f0,0 is Rayleigh or the
IEEE 802.15.3a lognormal mixture, this expectation is avail-
able in closed form.

The Second Component

We next consider

Φr0 :=
∫

ϕ(y)Nr(dy|X0)

=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)Nr(ds×dg|0,G00). (28)

SinceNr(·|0,G00) does not depend onG00, the above right-
hand side is actually a Poisson-driven shot-noise random
variable. Such random variables are discussed in Appendix A,
where formulas for their mean, variance, and moment gener-
ating function are given. In the case at hand,

E[Φr0] = (Λ̄rϕ)(0),

whereΛ̄r was defined in (11). Ifϕ has product form, we can
write

E[Φr0] = (Λ̄rϕ)(0) = R
∫ ∞

0
ϕ1(s)E0,s[ϕ2(G)]ds, (29)

whereG is a generic random variable with densityf0,s(·). For
ϕ2 a polynomial, the expectation will typically be available in
closed form, usually as an exponential ins (cf. (12)); if we
also haveϕ1(s) = I[a,b](s), then(Λ̄rϕ)(0) can be computed in
closed form.

Analogous to (28), suppose we have another integralΨr0 of
a functionψ(s,g) also of product form. Then the covariance
between these two Poisson-driven counting integrals is

cov(Φr0,Ψr0) = (Λ̄r(ϕ ·ψ))(0)

= R
∫ ∞

0
ϕ1(s)ψ1(s)E0,s[ϕ2(G)ψ2(G)]ds.

If ϕ1 andψ1 are indicator functions of disjoint intervals, then
the covariance is zero. If the intervals are the same, say[a,b],
then

cov(Φr0,Ψr0) = R
∫ b

a
E0,s[ϕ2(G)ψ2(G)]ds. (30)

As noted above, there are interesting cases in which this
expectation and integral will be computable in closed form.

The Third Component

We now focus on the properties of
∞

∑
i=1

ϕ(Xi)+
∞

∑
i=1

∫
ϕ(y)Nr(dy|Xi). (31)

If we put

N1(B) :=
∞

∑
i=1

IB(Xi) and N×(B) :=
∞

∑
i=1

Nr(B|Xi),

then (31) can be written as
∫

ϕ(x)N1(dx)+
∫

ϕ(y)N×(dy).

Properties of this sum of counting integrals are derived in
Appendix B. Hence, if we put

N⊗(·) := N1(·)+N×(·),

then the counting integral

Φ⊗ :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N⊗(ds×dg). (32)

can be written asΦ⊗ = V + P, where V and P are the
corresponding integrals with respect toN1(·) andN×(·). Since
E[V +P] is given by eq. (25) in Appendix B, we have

E[Φ⊗] = Λ̄1(ϕ)+ Λ̄1(Λ̄rϕ), (33)

whereΛ̄1 is the linear functional defined in (9) and̄Λr is the
linear operator defined in (11).

Now suppose that

Ψ⊗ :=
∫ ∞

0

∫ ∞

−∞
ψ(s,g)N⊗(ds×dg).

If we similarly write Ψ⊗ = W+Q, then

cov(Φ⊗,Ψ⊗) = cov(V +P,W+Q)

is given by eq. (26) in Appendix B. Thus,

cov(Φ⊗,Ψ⊗) = Λ̄1(ϕ ·ψ)+ Λ̄1(ψ · Λ̄rϕ)+ Λ̄1(ϕ · Λ̄rψ)

+ Λ̄1(Λ̄r(ϕ ·ψ))+ Λ̄1((Λ̄rϕ) · (Λ̄rψ)).
(34)

We also record the special case,

var(Φ⊗) = Λ̄1(ϕ2)+2Λ̄1(ϕ · Λ̄rϕ)

+ Λ̄1(Λ̄r(ϕ2))+ Λ̄1((Λ̄rϕ)2). (35)
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Simplifications of (33)–(35): The assumptions of the
IEEE 802.15.3a model allow for several further simplifications
in the formulas forΛ̄1 and Λ̄r . This makes the computation
of (33)–(35) quite tractable.

We first considerΛ̄r . Sinceλr(s,g|τ,γ) is defined in (10)
not to depend onγ, we write

(Λ̄rϕ)(τ) =
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)λr(s,g|τ,γ)dsdg.

Next, since we will be concerned only with functionsϕ of
product form, e.g.,ϕ(s,g) = ϕ1(s)ϕ2(g), we can further exploit
the definition ofλr to write

(Λ̄rϕ)(τ) = R
∫ ∞

τ
ϕ1(s)Eτ ,s[ϕ2(G)]ds,

where G is a generic random variable with densityfτ ,s

mentioned in (10). Note that ifϕ1(s) = I[a,b](s) for some
0 ≤ a < b, then (Λ̄rϕ)(τ) = 0 for τ > b. Also, sinceG has
an even density, ifϕ2 is odd,(Λ̄rϕ)(τ) = 0.

We next consider̄Λ1. If ψ also has product form, and if we
exploit the definition ofλ1 in (8), then

Λ̄1(ϕ ·ψ) = C
∫ ∞

0
ϕ1(τ)ψ1(τ)Eτ ,τ [ϕ2(Γ)ψ2(Γ)]dτ,

where Γ is a generic random variable with densityfτ ,τ
mentioned in (8). Note that if 0≤ a < b≤ c < d, andϕ1(s) =
I[a,b](s) and ψ1(s) = I[c,d](s), thenϕ ·ψ = 0 and the first and
fourth terms in (34) are zero.

We can now write

Λ̄1(ψ · Λ̄rϕ) = C
∫ ∞

0
ψ1(τ)(Λ̄rϕ)(τ)Eτ ,τ [ψ2(Γ)]dτ.

Note that if ϕ1 and ψ1 are indicators of disjoint intervals as
above, then the second term in (34) is zero. Also, sinceΓ has
an even density, ifψ2 is odd,Λ̄1(ψ · Λ̄rϕ) = 0.

For the calculations we consider here, the expectationsEτ ,τ
andEτ ,s will always be available in closed form. Hence, the

first term in (33) and in (34) involve at most one integral. The
second term in (33) and the second through fourth terms in
(34) require at most a double integral. The last term in (34)
may require a triple integral, unlessϕ2 = ψ2, in which case at
most a double integral is necessary. In some cases, all terms
can be computed in closed form.
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