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Analysis of the IEEE 802.15.3a
UWB Channel Model

John A. GubnerMember IEEE, and Kei Hao

Abstract— The IEEE 802.15.3a standards body has developed to a waveform can be viewed as a shot-noise process driven
a modification of the Saleh—Valenzuela (SV) multipath channel py the two-dimensional point process.

model as the accepted channel model for ultra-wideband (UWB) Since the SV/IEEE 802.15.3a channel model is a kind

investigations. The SV model is a well-defined simulation model f clust int in Secti " . brief i
that is straightforward to implement. However, since the model of ¢ us.er point process, In section v_ve give a briet In-
as specified is not directly amenable to theoretical analysis, this troduction to such processes. We also introduce augmented

paper develops it as a two-dimensional “augmented cluster point cluster processes. We then foreshadow the construction of
process” that is composed of three statistically independent com- the SV/IEEE 802.15.3a process to come in Section IV and

ponents that can be separately analyzed. For the IEEE 802.1®3 gy how the process will decompose into three statisgicall
model, simple closed-form expressions in terms of the channel

parameters are derived for: 1) The mean and variance of the independent comp(_)nents. L . .
number of multipath arrivals in a time window as well as  The power of this framework is illustrated in Section V.

the covariance of the numbers of arrivals in nonoverlapping There we first give novel closed-form expressions for the

windows. 2) The mean and variance of the sum of the path mean and variance of the number of multipath arrivals in a

gains in a time window; it is shown that the sums of gains e window. We also give the covariance of the number of

in nonoverlapping windows are uncorrelated. 3) The expected . . ] . . ) .

energy of a received UWB waveform. These are all special casesamvaIS n nonoverlappln_g time W'nd_OWS' note that Sm_ce th_

of genera| integra| formulas that are derived. IEEE 802.15.3a model is not a Poisson proceSS, arrivals in

disjoint time windows are not independent. As a more compli-

cated example, we give novel closed-form expressions for th

mean and variance of the sum of the gains of paths arriving in a

specified time window. We also show that the sums of the gains

. INTRODUCTION in nonoverlapping time windows are uncorrelated under the

LTRA-WIDEBAND (UWB) communication systems |EEE 802.15.3a model. As the third example, we give novel
have recently generated intense interest due to their pxpressions for the covariance function of a received UWB

tential for providing pervasive wireless connectivity [§12]. waveform under the IEEE 802.15.3a model. In particular, we

This potential is due to the fact that UWB can provide vergive a simple closed-form expression for the expected gnerg

high bit rate, low-cost, low-power wireless communicatfon in a received UWB waveform.

a wide variety of systems; e.g., personal computer, TV, VCR,

CD, DVD, MP3 [1], [9]. Current systems, such as those basgf M uLTIPATH CHANNELS, POINT PROCESSESAND SHOT

on IEEE 802.11b, 11a, or 11g cannot do this because their NOISE

power consumption and cost are too high [1]. Er . .
. o equency-selective fading channels are well modeled b
The Federal Communications Commission recently allg- g y 9 y

. . Ime-varying impulse responses of the form [8
cated 7.5 GHz of spectrum for unlicensed commercial ultra- ying imp P (6]

wideband (UWB) communication systems. In order to develop Lp(t)
a common channel model, the IEEE 802.15.3a standards body hp(t, 1) = Zl Bt)d(r—m(t)),
considered several possibilities and established a matidit =
of the Saleh—Valenzuela (SV) model [10] as the acceptéﬂﬂefe'f andrt are the observation time and the application time
channel model for UWB investigations [1], [7]. The SV modeff the impulse, respectively. The total number of multipath
is a well-defined simulation model that is straightforwaed tcomponents is.p(t), the {3} are time-varying gains, and the
implement. Unfortunately, the usual specification of the SY7i(t)} are the path arrival times or delays. In this paper we
model is not directly amenable to theoretical analysis. focus on indoor environments whose structure changesslowl
To address this difficulty, in this paper we develop th# comparison with the signaling rate. This suggests that we
SV/IEEE 802.15.3a model as a two-dimensional “augment&ge the corresponding time-invariant model
cluster point process” that is composed of three statistica Lp
independent components that can be separately analyzed. hp(1) = Z Bo(t—T1).
In Section 1l we briefly introduce multipath channel models =1
and show that they can be thought of as two-dimensional point
processes. We then show that the response of such a chafinelhe Point-Process Connection

_ _ We can regard the pair&,3)) as random points in two-
J. A. Gubner and K. Hao are with the Department of Electricad and. . | h in Fig. 1. | h d
Computer Engineering, University of Wisconsin, Madison, V@l766—1691 Imensiona space as s Own n .'g' - In Ot.er qu S, we
USA (e-mail: gubner@engr.wisc.edu, khao@wisc.edu). regard the pairg1,3) as being points of &wo-dimensional

Index Terms— Augmented cluster process, point process,
Saleh—Valenzuela model, ultra-wideband.
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B I1l. CLUSTERPROCESSES
Bl o We give a brief introduction to cluster processes. Cluster
processes are superpositions of point processes that can be
Ps * described by the following two-step procedure. First, t®us
B> o “centers” are placed at random locatioks X1, ...in a space
Ps d X. Second, conditioned on the value of ea¥h another
Ba ¢ collection of points{Yi; }3_; is placed randomly “nearX. In
more abstract settings, the poi{g can belong to a space
that is different fromx, but in the SV/IEEE 802.15.3a model,
Bs ° Y =X =0,0) x (—o0, ), where[0, ) is the set in which the
T path arrival times take values, afdo, o) is the set in which
0 Tl T2 T3 T4 T5 T6

the path gains take values.

‘ o _ _ _ When A C X, we let N;(A) denote the number of cluster
Fig. 1. Delay-gain pairét, §) regarded as a two-dimensional point processcemersxi that lie in A. We can write this mathematically as
follows. Letla(Xx) denote the indicator function &, Ia(x) ;=1

point processBy definition, the delays; are nondecreasing. !f X € A andla(x) := 0 if x¢ A. Then

However, the corresponding gains depend in part on the ®
different scatterers encountered by the radio waves. Hence Ne(A) = _%IA(X‘) @)
although the general trend is to decrease, it is not monatoni =

Most prior work, e.g., [2], [3], [5], [10], [13], has always counts the number of point§ that lie in A. We callN¢(-) the
regarded the delays as a temporal point process and fhas Cluster-center process
marks. Although, the two perspectives are equivalent Bfj, [ WhenBC Y, we letN.(B) denote the number of;; that
we find the abstract multidimensional viewpoint much morke in B, i.e.,

0 00

amenable to analysis. N.(B) := ij lg(Yij). ()
i=0]=1
B. The Shot-Noise Connection We call N, (-) a cluster process
The respons@(t) of the channehy(1) to a signalé (t) is The number of points from thigh cluster that lie inB is
Lp 0
p) = Y BEE-T). 1) Ni (BIX) = ZlIB(Yu)- 4)
I=1 i=
Observe that if we pu,(1,B) := BE(t— 1), then In the context of the SV/IEEE 802.15.3a model below, for each
L i, the {¥j}7_, correspond to the (noninitial) rays arriving in
p(t) = : 6.(1.8) the ith multipath cluster. For this reason, we cilji(-|X;) the
gl R ith ray process We can now write the total number of points

&n B as the superposition

N.(B) = _iN,(B|X;).

Since for eachy, p(t) is a sum of values of a function evaluate
at random pointsp(t) is called a shot-noise random variable.
A collection of such random variables indexedthig called a

shot-noise process. This is an important observation Isecau

so much theory is available to analyze shot-noise (or fiterdl> @S in the SV/IEEE 802.15.3a model, the(-[x) are inde-
point processes), e.g., [4], [6], [L1] to cite just a few. pendent Poisson processes for diffengnive see thal,(-) is
conditionally a sum of Poisson processes and therefore con-

ditionally Poisson. In other words, in the SV/IEEE 802.%5.3

C. The Clustering Phenomenon . . .
_ ) model,N,(-) is adoubly-stochastic Poisson process
We have now established that a multipath channel can be

modeled as a point process in a two-dimensional space, and
that its response to an input waveform has the structure oP‘a
shot-noise process. What remains is to specify the distoibut Up to now, the points of the cluster-center process and
of the timest and the gainsB. For example, Turinet the points of the ray processes belong to different spaces
al. [13] considered modeling the as the arrival times of a andY. In the case of the SV/IEEE 802.15.3a model and its
homogeneous Poisson process. Unfortunately, this model v@odifications,X = Y. It is therefore possible to include the
not consistent with the clustering of paths observed inrthdlluster centers as members of their corresponding clusters
data [10]. Other researchers have considered inhomogenedathematically, we put

Poisson arrivals [2] and doubly-stochastic Poisson dsi\a]. .

However, no one has taken the SV/IEEE 802.15.3a model, N(B) = Ne(B)+N.(B).

which includes the clustering effect, and expressed it aslrathe SV/IEEE 802.15.3a modd\(-) is a Poisson process,
cluster process in a two-dimensional space, as we do in #ed soN(:) is the sum of a Poisson process and a doubly-
next two sections. stochastic Poisson process; note tNaf-) and N.(-) are not

Augmented Cluster Processes
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independent since the both depend on the cluster ceRtersA. Distribution of the Initial Paths of the Clusters
We call N(-) an augmented cluster processUsing (2) and g initial path in the initial cluster arrives at time zerétw

(3), we can write a gain Gy that has a density that we denote fyp(-).
o w ® Next, independent of5gp, the arrival times of the initial
N(B) = Zjls(xi) + Zﬁ > 1s(Yij). (5) paths of the remaining clusters are modeled as a homogeneous
i = e

Poisson process whose rate we denoteChyif the initial
path of such a cluster arrives at tinmeits gain has a density
that we denote byf; ;(-). The gains of different initial paths
® ® are independent and can be considered marks of the Poisson
N(B) = 20%|B(Yij)- arrival times. Such a marked Poisson process is equivatent t
=hI= a two-dimensional Poisson process with intensity funcfn

If we replacelg(y) by an arbitrary functionp(y), we obtain S€C- 5-2]

If we defineYg:= X, we can write this more compactly as

the counting integral [11] M(Ty) = Chely), T>0, yeR. (®)
/¢(y)N(dy) = Z}%(p(Yij). 6) For futurg reference, on functiong(t,y), we define the
Y i=0j= linear functional

Mo = [ [ swymayder @

B. Decomposition of Augmented Cluster Processes

When we define the SV process below, it will be convenie. Distribution of Noninitial Paths of the Clusters

to write (5) as Conditional on the arrival times of the initial paths of the

o o ® ® clusters, the arrival times of the noninitial paths in diéet
N(B) = Is(X0)+ ZIB(YOi) +_Zl|B(Xi) +'Zi leB(Yij ). clusters, including the cluster that starts at time zere raod-

1= = == eled as independent homogeneous Poisson processes. Each of
these Poisson processes has the same rate, which we denote
by R If one of these paths arrives at tinseand is part of

- a cluster that started at tine the arriving path gain has a
/Yd)(y) N(dy) = ¢00) +/¢(y) N (dyXo) density that we denote bft 5(-). These gains are independent

Recalling the definition oN; in (4), we can rewrite (6) as

l l and can be considered marks of the Poisson arrival times of
+;¢(Xa)+i;/¢(y) Ne (dy1X). (7) the noninitial paths in the cluster. As mentioned abovehsuc
a marked Poisson process is equivalent to a two-dimensional
Now, the easiest way to construct a cluster process is to tdkeisson process. Here the intensity functich is
the cluster sequencg;; }‘]?":1 to be independent (as a function
of i). This means that for distinct values Bf the processes Ar(s,9T,y) = Rfrs(Q)lre)(9)- (10)
N: (-[x) are independent. In the SV/IEEE 802.15.3a model, nRfyte that), (s,g|T, y) depends ort but noty.

only do we do have this, but we also have the initial cluster For future reference, on functiong(s,g), we define the
centerXo independent of the remaining cluster centetgt{” ;. ’ e

operator
Furthermore Xp is such thaiN;(-|Xp) does not depend oK. P o e
Hence, for the SV/IEEE 802.15.3a model, counting integrals (A ¢)(1,y) = / / ¢(s.0)A (s, g|T, y)dgds
with respect toN(-) can be written as the sum of the three 0 Jow
statistically independent quantities, _ R/ / 6(s,9)frs(@)dgds  (11)
T J-o '
¢(Xo), ®ro = /¢(Y) Nr (dy|Xo), which does not depend op For this reason, we sometimes

write (Ar¢)(T) to denote (11).
and
by = Z¢(xi)+ Z/q;(y) N (dyiX). C. Assumptions about the Densities of the Gains
= =1 Following Saleh and Valenzuela [10, eq. (26)] and Batra
Because these three parts are independent, they can be ahall, p. 2126], we assumé;s(-) has a second moment

lyzed separately. proportional to
e /g (5-1)/%, (12)
IV. THE SV/IEEE 802.15.8 AUGMENTED CLUSTER 1Since the intensity in (10) is zero far< 1, the Poisson process starts at
PROCESS time 1. This is in contrast to [1] and [10]. Their ray processes wazéned

by taking Poisson processes starting at time zero and thesldtang them
. . . by the arrival time of the initial path in the cluster. The twanstructions are
In the SV multipath channel model [10], paths arrive iRgyivalent provided we adjust the definition &fs(-). This is done in (12)

clusters. where we uses— 1; [1] and [10] would use onls.
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wheretg andsy are power-delay time constants. In [18]s(-) A. Mean and Covariance of Number of Paths
is taken to be a Rayleigh density. For the IEEE 802.15.3a ot <a<b<c<d, and put$(sg) = lay(s) and

model in [1], a{+1}-valued-Bernoul(i1/2) mixture of log- ;g o) _ lca (S)- Then® is the number of multipath arrivals

normal densities is used. This implies that under the mcrdelih the time window(a, b], and W is the number of multipath

[1], frs(-) is even and therefore has zero mean. Note that Oivals in the time windowic, d]. Using (27), (29), and (33)

second-order rgsults in the next Section make no assumpt'ﬂpAppendix C and the simplifications discussed there, it can
about the densityf; s(-) other than its having zero mean anq,, shown that

second moment proportional to (12).

b+a
V. SOME STATISTICS OF THEIEEE 802.15.3 MODEL EI®] = lay(0)+Rb—2a)+C(b—a) {1+R 2 ] (14)

Let {(So,Gio)}i2; be the points of the two-dimensionalsimilarly, using (30) and (35), it can be shown that
Poisson process with intensity functidn in (8). PutX; :=

(So,Gio) for i > 1, and putXo := (0,Ggg), Where Gop has var(®) = R(b—a)
density foo(+) and is independent of the Poisson process. For 3b-a b+2a
i=0,1,..., givenX = (1,y), let {(Sj,Gij) }{_, be the points +C(b-a)|1+R +Re(b—a) ’

of the two-dimensional Poisson process with intensity fiomc ) e
A(,-|T,y) in (10). PutY; := (S;,Gyj) for j > 1, and put As for the covariance of the number of paths in disjoint

intervals, first write

Yio := X. Then the counting integral in (6) becomes

o o X 0,Goo), W(0,G ®ro, W
q;;:/o /_wq)(s,g)N(dsxdg):izojzbtp(sj,Gij). (13) cov(P, W) cov(¢(0,Goo), Y(0,Goo)) + cov(Pro, Wro)

+ cov(Pg,Wy).

Here are some choices ¢fs,g) that make counting integrals The first term on the right is zero since the intervials] and

so valuable: [c,d] are disjoint. The second term is zero by the paragraph
« Number of Paths in a Time WindoW we take¢(s,g) = containing (30). As forov(®y,Ws), which is given by (34),
llap(S), then (13) becomes it is argued at the end of Appendix C that the first, second,
— and fourth terms of (34) are zero. Evaluating the remaining
Z) Z)I[&b](sj). terms, it can be shown that
i=0j=
This is the number of arrival time3; that fall in the time cov(®,¥) = CRb-a)(d-c)[1+Rb+a)/2).
window [a,by.
« Sum of Path Gains Arriving in a Time Windowf B. Mean and Covariance of Sum of Path Gains in a Time
9(5,9) = gliay(9), then (13) becomes Window

© o Gl (S1) Let0O<a<b<c<d as above, and pu(s,g) = gljap(S)
i;j; ) ablA =) and /(s,g) = gl q)(S). Then® is the sum of the gains of the

. ) _multipath arrivals in the time windoya, b], andW¥ is the sum

This adds up all the path gair;; whose path arrival of the gains of the multipath arrivals in the time windésyd).

time §; falls in the time window(a, b]. Using (27), (29), and (33) along with the fact thiats(-) has
« Received UWB Waveforméwe take¢(s,9) =9¢(t—S). 710 mean, it is easy to show that

then (13) becomes

0 00 E[CD] - 0
%Z}Gijf(t*SJ) _ o _ .
i=0j= Using (30), and again using the fact tf{at ¢ )(7) =0 in (35),
This is exactly the received UWB waveforptt) in (1) We find that
modulo a renumbering of delays and gains to accommo- 2 b 2
date double subscripts. Here of course, the joint distribu- var(®) = lap)(0)E[Ggo) +R/a Eos[G7lds
tions of the delays and gains are completely specified. +AL(02) + A1(Ae(97), (15)
The key to analyzingb in (13) is to break it into the sum of
the three independent terms, where G is a generic random variable with densifys(-).
On account of (12), (15) is computable in closed form. For
® = ¢(0,Goo) + Pro+ Ps, example, the integral term3s
as discussed in Section IlI-B. I/(s,g) is another function, —a/s o/
then we can Re(e —e ), (16)
W = (0,Goo) +Wro+We and _
A1(9?) = Crp(e ¥/ —egP/T0), 17)

where these terms are independent and defined analogously.
Furthermore’ theorcorresponding terms @b and'¥ are also ’Recall thatETrS[Gz] is proportional to (12). In (16)—(20), we have taken
independent. this constant of proportionality to be one.
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A bit more work shows that the last term in (15) can also & 40
expressed in closed form. It is

M(A(9%) = CR[Z(ab,50){(0,2,%T0/(So— T0))

+ SOZ (aa ba TO)
— 0 (a,b,s0To/(s0— T0))& /%], (18)

where 60 70 80 90

(abp) = ple ¥+ —e/H].
Fig. 2. Plot ofvar(®) in (15) as a function ob with a= 0. The limiting
If we puta=0 and letb — o, we find that value of the curve is about 34. Ninety percent of this valuabisut 31 and
is reached at about= 33 ns.

lim var(®) = 1+Rs+Cro+CRsT. (19)

b—oo

. C. M dC i f the UWB Ch IR
Example 1:Suppose that we take= 0 in the definition of ean and Lovanance of the annel kesponse

¢(s,9) = gljap (). We can then plot (15) as a function bf If we taked (s,g) = 9¢ (t1 —s) andy(s,9) = g¢ (t2—s), then
as shown in Fig. 2. For the plot we have used the parametfts= P(t1) and¥ = p(t2), wherep(t) is the UWB waveform
of channel model CM3 in [1, Table 1], namely seen at the receiver. Using the formulas in Appendix C, it is
not hard to show that
C=00667 R=21 1=140, and s$=7.9.

Elp(ty)] = 0
Hence, the limiting value ofar(®) is about 34. At about gng
b =33 ns, the variance has reached 90% of the limiting value.
Ninety percent of the limiting value is about 31. Note that by V(P (t1),p(t2))
(14), the expected number of paths in the time wind6yg3] = E[G3l¢ ()& (t2)
is about 149. We also point out that the expected number of /°° B . 2
multipath clusters irja, b] is given by R 0 £ (1= 9)¢(t2 —5)Eos[C]ds
2
E[No([a,b] x R)] = Elljag;(0) +Na([a,b] x IR)] +C [ €t DE (- EL(Gdr
= lay(0)+M([ab] xR) +CR/0 / E(t,— S)& (to— )1 5G?| ds .
= T

ljap(0) +C(b—a). _ _ .
Note that this last double integral can be reduced to a single
The expected number of clusters[M33] is about 3. integral by changing the order of integration and using .(12)
We conclude this subsection by writing Example 2:Let us compute the expected energy in the

received wavefornp(t). An easy calculation shows that
cov(®,W) = cov(¢(0,Goo), Y(0,Gop)) + cov(Pro, Wro) () Y

+ cov(Pg, Ws). EU p(t)zdt] = / E[p(t)?]dt
The first term on the right is zero since the intenfald] and _ /°° ) o(t)) dt
[c,d] are disjoint. The second term is zero by the paragraph _wcov(p( ),p)
containing (30). As forcov(®g,Ws), it is argued at the end = ||§H2{1+ R50+CT0+CR$)T0}, (20)

of Appendix C that the first, second, and fourth terms of (3
are zero. However, the remaining terms involgp, which
is zero sincek; s[G] = 0. Thus,

A\f/zhere €)% := [=,&(t)2dt is the energy in the transmitted
waveform. Notice that (20) is proportional to (19). For the
situation in Example 1 and Fig. 2, we see that 90% of the
cov(®,¥W) = 0, received signal energy is due to the gains of the paths that

o _ ~arrive in the first 33 ns.
and we see that the sums of gains in different time windows

are uncorrelated. VI. CONCLUSION

Remark:If we are interested in the sum of tlsguares of We have presented a careful de\/e]opment of the
the gains in an interval, we can talés, g) = g°ljap(S). If we  SV/IEEE 802.15.3a model as an augmented cluster point
then use the formulas of Appendix C to comph{€], we get process that is composed of three statistically independen
exactly (15). This is easy to see if we note that since therequaomponents that can be separately analyzed. We have shown
of an indicator is equal to itselfi(s,g) = gzl[ab](s) =¢(s,0)% that important quantities of interest can be expressed @s sh
e.g.,A1($?) = A1¢. Now, since the limiting value of (15) is noise random variables driven by the augmented cluster pro-
given by (19), we see that the expected sum of squares of tess, and we have derived formulas for means and variances
gains in[0,b] converges to (19). Thus, although the expectaaf such shot-noise random variables. Although the general
number of paths ifi0, b] grows quadratically ifb by (14), the formulas involve double or even triple integrals, in manges
energies of the paths decay so rapidly that the expected silvey can be expressed in closed form or simplified to involve
of squares of gains ové0, b] levels off for largeb. only single or double integral.
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APPENDIXA BecauseN; (-) is a Poisson proceshl, (-) is called aPoisson
POISSON-DRIVEN SHOT-NOISE RANDOM VARIABLES cluster process[4]. Since N, (|x) is also Poisson, we call

other words forA C X, Ni(A) denotes the number of pomtsthea -field generated by (-), then conditioned ofN1, N (-)
in A. The random variablé; (A) is Poisson, and we denoteiS @ Sum of independent Poisson processes. Hence, cordition

its mean value by on N1, the mean measure df, () is
A1L(A) = E[Ny(A)]. M, (B) := E[N,(B)|N1] = /Ar(B\x) Ny (dx).

When Ny(A) is regarded as a function oA, Ni(-) is @ |n other words, because thé(:|x) are independent Poisson
nonnegative, integer-valued measure. Wiel) is regarded processes independent df(-), Nu(-) a doubly-stochastic
as a function oA, we call/A;(-) the mean measureof Ni(-).  poisson process with conditional mean measugé-). Thus,

If v is a function onX, we define the shot-noise randomy_ (.) s both a cluster process and a doubly-stochastic Poisson

variable [6, Ch. 3] process.
Vo= /v(x) Ny (dx). (21) ) ) ) _
Doubly-Poisson-Cluster-Driven Shot-Noise Random Vaeisib
Then Let p and g be functions defined oiY, and introduce the
ElV] = /V(X) A1(dX), cluster-process-driven shot-noise random variables

where we assume c LY(A;) both here and in (21) in order P = / p(y)Nx(dy) and Q := /q(y)N
that the integrals be well defined. If we also have L1(A;) '

and define Then
— [ wooNu(ax, _ 1/
E[PIN1] = [ p(y) M (dy) = P(Y) Ar (dy1X) | Ne(dX).
then . - . o :
. It is now convenient to introduce the operator notation
EVW] = / V(X)W(X) Ag (dX) _
S | (AR = [ PO)A (i)
T [/ v(x) Al(dx)] U W(X)Al(dx)}’ so that we can write
where we additionally assumew € L2(A1). We also have the ~ E[P|N1] = /p /(Kr p)(X)Ny(dx), (23)
moment generating function ) ) .
which we recognize as a Poisson-driven shot-noise random
E[eSV} _ eXpU[esv(x) —1] Al(dx)}, variable analogous to (21). A similar argument shows that
E[PQINY] /
wheres is complex ande®) — 1] € LY(Ay). [PQIN:] Py )
In order to write the preceding expectations in a more / /
compact form, we define the linear functional + [ PY)M-(dy) || | a(y)Mx(dy)
A = [Voona(ax 22) = [(Ap-a oMy
50 that | Jrpons(@n)| finvaim(an | 20

EVI = A EVW] = Aav-w)+Av-Aaw, Since the integrals in (23) and (24) are Poisson-driven-shot

and T noise random variables, taking expectations yields
E[e] = exp[A1(eM) —1)]. — =
€] p[A( )] E[P] = A1(Arp)

APPENDIXB and
ANALYSIS OF INTEGRALS WITH RESPECT TONj(-) AND e - - —
Ny (+) 1() EPQ = N1 (_ r(_p Q))_"‘/\_l((/\r p)- (Ar@))

Doubly-Poisson Cluster Processes +A(Ap) - M(AQ)

LetNy(-) be the Poisson process defined in Appendix A with We also need that
mean measuréi(-) and the Imegr fungtlonal\l deflned. in EVPNi] = VE[PN{]
(22). Let{N;(-|x),x € X} be a family of independent Poisson —
processes on a s& Assume theN;(-|x) are independent of = V/(/\r P) () Ny (dx),

Ni(-). Denote the mean measure f(-|x) by Ar(:|X).

We now define the cluster procelis () on Y by [4, Ch. 8] which is a product of Poisson-driven shot-noise randon vari

ables. Hence,
N.(B) = /Nr(B\X)Nl(dX), BCY. EVP = Ai(v-(Arp) +A1(V) - Ar(Arp).
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Example 3:Using the foregoing formulas, it is easy to see Analogous to (28), suppose we have another intég¢jfalof

that a function(s,g) also of product form. Then the covariance
EV+P] = Kl(v) +K1(Kr D). (25) between these two Poisson-driven counting integrals is
and cov(®ro,Wro) = (Ac(@-¥))(0)

cov(V +PW+Q) = Ar(v-W) + Ay(w-Ar p) + Ay (v-Acc) JACCIZCERECIECIEE

+ AL (A(p-0)) + AL((AP) - (A)). If ¢1 and g, are indicator functions of disjoint intervals, then
) the covariance is zero. If the intervals are the same [ad),
then
APPENDIXC b
®o, W) = R/ E G G)ld 30
ANALYSIS OF SV/IEEE 802.15.8 COUNTING INTEGRALS cov(®ro, Pro) /a 0s(#2(G)42(G)[ds  (30)

As discussed in Section Ill-B, in the SV/IEEE 802.15.34S noted above, there are interesting cases in which this

model, counting integralsd such as (7) and (13) can pe€Xpectation and integral will be computable in closed form.

written as the sum of three statistically independent terms

® = ¢(Xo) + Pro+ Py. We now derive general formulas forThe Third Component

some statistics ok (Xp), ®ro, and ®y. Motivated by the  We now focus on the properties of
specific counting integrals in Section V, we restrict aftamt

to integrandsp (s,g) of product form, sayp1(s)d2(g). icp(xa)fi/tp(y) N; (dyiX). (31)
) If we put
The First Component - N
Under the SV/IEEE 802.15.3a model(Xo) = ¢ (0,Goo). Ni(B) = les(x) and Ny (B) := ZlNr(BDQL
For a product-form integrand, this becomgs(0)¢2(Goo). = =
Hence, then (31) can be written as
EM’(XO” = ¢l(O)E[¢2(GOO)]~ (27) /(I)(X) N1(dX)+/¢(y)N>< (dy).

If ¢(S) = ljap(s) anda > O,Zthen this expectation is z€ro.p o ties of this sum of counting integrals are derived in
If ¢2(g) is equal tog or g= and fop is Rayleigh or the Appendix B. Hence, if we put
IEEE 802.15.3a lognormal mixture, this expectation is lavali ’

able in closed form. No(-) = Na(-) +Nux(-),
then the counting integral

o =[] gsoN.(dsxdg. (@2

The Second Component

We next consider
can be written asPy =V + P, whereV and P are the
& = /¢(y) Ny (dy{Xo) corresponding integrals with respectNg(-) andN, (-). Since
/oo /oo E[V + P] is given by eq. (25) in Appendix B, we have
= 9(5,9)Nr(dsx dg0,Goo).  (28) T
0 Jw r E[®s] = Aa(9)+Au(A9), (33)

SinceN;(+|0,Goo) does not depend oo, the above right- whereA; is the linear functional defined in (9) ang is the
hand side is actually a Poisson-driven shot-noise randaifear operator defined in (11).

variable. Such random variables are discussed in Appendix ANow suppose that

where formulas for their mean, variance, and moment gener-

ating function are given. In the case at hand, Yo = /o /7 Y(s,g9) Ny (dsx dg).
E[®ro] = (Ar9)(0), If we similarly write W, =W +Q, then

whereA, was defined in (11). If has product form, we can cov(Pg,Wy) = cov(V+PW+Q)

write is given by eq. (26) in Appendix B. Thus,

E[do] = (A$)(0) = R/c)w¢1(s)Eo,s[¢2(G)]ds (29)  cov(®e,We) = Au@- W)+ AW-AP) +Ar(@-A)

_ . , _ + AN W)+ AN D) - (A W)).
whereG is a generic random variable with densiys(-). For (34
¢2 a polynomial, the expectation will typically be availabfe i We also record the special case,
closed form, usually as an exponentialsricf. (12)); if we — — —

Y p e 02 var(®y) = Au(6)+2M (- Ao)

also havepi(s) = Iz (S), then(Ar¢)(0) can be computed in L v
closed forrr11. =0 +A(A(92) +M((Ard)?).  (35)
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Simplifications of (33)—(35): The assumptions of the first term in (33) and in (34) involve at most one integral. The
IEEE 802.15.3a model allow for several further simplifioa second term in (33) and the second through fourth terms in
in the formulas forA; and A,. This makes the computation(34) require at most a double integral. The last term in (34)
of (33)—(35) quite tractable. may require a triple integral, unlegs = y», in which case at

We first consider/\;. SinceA;(s,g|T,y) is defined in (10) most a double integral is necessary. In some cases, all terms

not to depend ory, we write

//4589 (s,g|7,y)dsdg

Next, since we will be concerned only with functiogs of
product form, e.g.9 (s,9) = ¢1(S) $2(9), we can further exploit
the definition ofA, to write

(N$)(T) = R/ 91(9)Ex [¢2(G)]ds

where G is a generic random variable with densitf¢ ¢
mentioned in (10). Note that ifh1(s) = lj3p(s) for some
0<a<b, then(A¢)(T) =0 for T > b. Also, sinceG has
an even density, ifp is odd, (Ar¢)(7) =0.

We next consideA;. If ¢ also has product form, and if we
exploit the definition ofA1 in (8), then

M(@-9) = C [ 8O0 Erelo() (T,

where I' is a generic random variable with densitfyt ;
mentioned in (8). Note that if @ a<b<c<d, and¢(s) =
liap (S) and Y (s) = licq)(s), thend - ¢ = 0 and the first and
fourth terms in (34) are zero.

We can now write

MW-Ag) = C [ g0 (Ad) (D)ol dr

Note that if ¢ and ¢ are indicators of disjoint intervals as
above, then the second term in (34) is zero. Also, siné¢ms
an even density, iff, is odd, A1 (¢ -Ar @) =0.

For the calculations we consider here, the expectalins
and E; s will always be available in closed form. Hence, the

(Ar#)

(10]

(11]
(12]

(23]

can be computed in closed form.
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