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The Gamma Function and Stirling’s Formula
John A. Gubner
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University of Wisconsin–Madison

Abstract

Starting with Euler’s integral definition of the gamma function, we state and prove
the Bohr–Mollerup Theorem, which gives Euler’s limit formula for the gamma func-
tion. We then discuss two independent topics. The first is upper and lower bounds
on the gamma function, which lead to Stirling’s Formula. The second is the Euler–
Mascheroni Constant and the digamma function.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu

1. Summary

1.1. Euler’s Integral Definition

The gamma function,

Γ(x) :=
∫

∞

0
tx−1e−t dt, x > 0,

has the following three properties:

(i) Γ(1) = 1.
(ii) Γ(x+1) = xΓ(x). Use integration by parts.
(iii) lnΓ(x) is convex. By the Hölder inequality,

Γ

(
x
p
+

y
q

)
≤ Γ(x)1/p

Γ(y)1/q,

where 0 < p < ∞ with 1/p+1/q = 1 [6, p. 192].

1.2. Euler’s Limit Formula

The Bohr–Mollerup Theorem, which we prove in Section 2, says that Γ(x) is
the only positive function on (0,∞) with these three properties. More specifically, the
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theorem says that if f is any positive function on (0,∞) satisfying the three properties
f (1) = 1, f (x+1) = x f (x), and ϕ(x) := ln f (x) is convex, then

ϕ(x) = lim
n→∞

ln
n!nx

x(x+1) · · ·(x+n)
. (1)

Since Γ is such a function,

lnΓ(x) = lim
n→∞

ln
n!nx

x(x+1) · · ·(x+n)
. (2)

Applying the exponential to both sides and interchanging it with the limit on the
right1 yields

Γ(x) = lim
n→∞

n!nx

x(x+1) · · ·(x+n)
.

1.3. Stirling’s Formula2

In Section 3, we use the Bohr–Mollerup Theorem to show that there is a positive
constant C such that

Cxx−1/2e−x ≤ Γ(x)≤Cxx−1/2e−xe1/(12x). (3)

From the left-hand inequality,

C ≤ lim
x→∞

Γ(x)
xx−1/2e−x

,

and from the right-hand inequality,

lim
x→∞

Γ(x)
xx−1/2e−x

≤ lim
x→∞

Ce1/(12x) =C.

Hence,

C = lim
x→∞

Γ(x)
xx−1/2e−x

.

Since Γ(n) = (n− 1)!, if we let x = n in (3) and multiply the inequality by n, we
obtain

Cnn+1/2e−n ≤ n!≤Cnn+1/2e−ne1/(12n).

1 This is justified because the exponential is a continuous function [6, p. 86, Th. 4.6].
2 The material in Subsection 1.3 and Section 3 can be read independently of the material in Subsec-

tions 1.4–1.5 and Section 4.
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Hence, we can also write

C = lim
n→∞

n!
nn+1/2e−n

.

It can be shown C =
√

2π; e.g., [2]–[4], [6, pp. 194–195].
It is shown in Section 3.2 that

Γ(x)≤ 3xx, x≥ 1/2.

1.4. The Euler–Mascheroni Constant

Observe that the quotient in (2) satisfies

n!nx

x(x+1) · · ·(x+n)
=

e−x/1 · · ·e−x/n · ex/1 · · ·ex/nnx

x(1+ x)(1+ x/2) · · ·(1+ x/n)

= ex(lnn−1−1/2−···−1/n) 1
x

ex

1+ x
ex/2

1+ x/2
· · · ex/n

1+ x/n
.

Taking the logarithm of both sides yields

ln
n!nx

x(x+1) · · ·(x+n)
= x
(

lnn−
n

∑
k=1

1
k

)
− lnx+

n

∑
k=1

[
x
k
− ln

(
1+

x
k

)]
. (4)

The limit of the left-hand side exists and is equal to lnΓ(x) by the Bohr–Mollerup
Theorem, and we show in Section 4 that

n

∑
k=1

1
k
− lnn→ γ,

where γ is the Euler–Mascheroni constant. Hence, the sum on the right in (4) also
converges, and so

lnΓ(x) =−xγ− lnx+
∞

∑
k=1

[
x
k
− ln

(
1+

x
k

)]
.

1.5. The Digamma Function

Differentiating the preceding expression, assuming we can interchange the dif-
ferentiation and the infinite sum, yields the digamma function3

ψ(x) :=
d
dx

lnΓ(x) = −γ− 1
x
+

∞

∑
k=1

[
1
k
− 1/k

1+ x/k

]
3 Of course ψ(x) = Γ′(x)/Γ(x) as well.
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= −γ− 1
x
+

∞

∑
k=1

[
1
k
− 1

k+ x

]
= −γ− 1

x
+

∞

∑
k=1

x
k(k+ x)

.

This sum converges uniformly on any finite interval of the form (0,r]. Hence, by [6,
p. 152, Th. 7.17], we are justified in interchanging differentiation and the infinite
sum.

An analogous uniform-convergence argument shows that

ψ
′(x) =

1
x2 +

∞

∑
k=1

1
(k+ x)2 .

Since ψ ′ is positive, ψ is increasing; since ψ ′ is decreasing, ψ is concave. These
two properties of ψ are illustrated in Figure 1. Of course, since we already knew that
lnΓ(x) is convex, its derivative, ψ , is increasing.

0 1 2 3 4 5 6 7

−4

−2

0

2

Figure 1. The digamma function ψ is increasing and concave.

2. Proof of the Bohr–Mollerup Theorem

Let f any positive function on (0,∞) satisfying the three properties f (1) = 1,
f (x+1) = x f (x), and ϕ(x) := ln f (x) is convex, then (1) holds.

Before proving (1) for all x > 0, we make a few observations. First, when x = 1,
the quotient in (1) reduces to n/(n+1)→ 1, and so the right-hand side has the correct
value zero. Second, since f (x+ 1) = x f (x), we have ϕ(x+ 1) = lnx+ϕ(x). So it
would be a good sign if the limit in (1) also has this property. To see that it does,
observe that if we replace x with x+1 in the quotient in (1), we can write

n!n(x+1)

(x+1)(x+2) · · ·(x+1+n)
=

n!nx

(x+1)(x+2) · · ·(x+n)
· n

x+1+n

=
n!nx

x(x+1)(x+2) · · ·(x+n)
· xn

x+1+n
,
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where the rightmost factor tends to x. Hence,

lim
n→∞

ln
n!n(x+1)

(x+1)(x+2) · · ·(x+1+n)
= lim

n→∞
ln

n!nx

x(x+1)(x+2) · · ·(x+n)
+ lnx,

if the limit on the right exists (which is yet to be proved). If this limit is equal to ϕ(x),
then the preceding equation says that the limit on the left is equal to ϕ(x)+ lnx, which
is equal to ϕ(x+1) since we assumed f (x+1) = x f (x) and ϕ(x) := ln f (x).

As a consequence of the foregoing observation, it suffices to prove that (1) holds
for 0 < x < 1. (We already showed that it holds for x = 1.) To do this, we apply
induction to the property ϕ(x+1) = lnx+ϕ(x). For example,

ϕ(x+3) = ln(x+2)+ϕ(x+2)
= ln(x+2)+ ln(x+1)+ϕ(x+1)
= ln(x+2)+ ln(x+1)+ lnx+ϕ(x).

In general,
ϕ(x+n) = ln[x(x+1) · · ·(x+(n−1))]+ϕ(x).

In particular, with x = 1, we have ϕ(n+1) = lnn!.
Following Rudin [6, p. 193], we use the convexity of ϕ with the three intervals4

[n,n+1], [n+1,n+1+ x], and [n+1,n+2].

Since 0 < x < 1, we have n < n+1 < n+1+ x < n+2, and the difference quotients
of a convex function satisfy

ϕ(n+1)−ϕ(n)
(n+1)−n

≤ ϕ(n+1+ x)−ϕ(n+1)
(n+1+ x)− (n+1)

≤ ϕ(n+2)−ϕ(n+1)
(n+2)− (n+1)

.

Using the properties of ϕ , we simplify the preceding inequality to obtain

lnn≤ ln[x(x+1) · · ·(x+n)]+ϕ(x)− lnn!
x

≤ ln(n+1).

Multiplying through by x and then subtracting x lnn, we have

0≤ ϕ(x)− ln
[

n!nx

x(x+1) · · ·(x+n)

]
≤ x ln(1+1/n).

Since the right-hand side tends to zero as n→ ∞, (1) holds for 0 < x < 1.

4 According to Artin [1, p. vi], the use of convexity in this proof is due to H. Bohr and J. Mollerup in
vol. III of their 1922 complex-analysis textbook.

5



GammaFunctionStirling.tex 5/28/2021, . . . , July 2, 2021

3. Bounds on the Gamma Function

Following [1, Ch. 3], we select µ(x) so that

f (x) := xx−1/2e−xeµ(x), x > 0,

satisfies f (x+1) = x f (x) and is log convex. Then by the Bohr–Mollerup Theorem,
f will be proportional to the gamma function. Introducing upper and lower bounds
on µ(x) will lead to bounds on the gamma function.

To solve f (x+1) = x f (x), write

f (x+1)
f (x)

=
(x+1)x+1/2e−(x+1)eµ(x+1)

xx−1/2e−xeµ(x)

=
(x+1)x(x+1)1/2e−xe−1eµ(x+1)

xxx1/2x−1e−xeµ(x)

= (1+1/x)x+1/2xe−1eµ(x+1)−µ(x).

To make this equal to x, we need

eµ(x)−µ(x+1) = (1+1/x)(x+1/2)e−1,

or

µ(x)−µ(x+1) = (x+1/2) ln(1+1/x)−1
=: g(x).

If the sum

µ(x) :=
∞

∑
n=0

g(x+n),

converges, then µ(x)−µ(x+1) is a telescoping sum that is trivially equal to g(x).
We show in Section 3.1 that g is convex, strictly decreasing, positive, and satisfies

0 < g(x)≤ 1
12x(x+1)

=
1

12

[
1
x
− 1

x+1

]
.

To show that the series for µ(x) converges, we use the fact that the terms are positive
to write

0≤ µ(x) =
∞

∑
n=0

g(x+n)≤ 1
12

∞

∑
n=0

[
1

x+n
− 1

x+n+1

]
=

1
12x

due to the telescoping nature of the sum.
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If we put C := e1−µ(1), then C f (x) satisfies all the hypotheses of the Bohr–
Mollerup Theorem. Hence,

Γ(x) =C f (x) =Cxx−1/2e−xeµ(x).

Since 0≤ µ(x)≤ 1/(12x), (3) follows.

3.1. Properties of the g Function

Using the geometric series, we can write the derivative of ln(1− x) as

−1
1− x

=−
∞

∑
n=0

xn, |x|< 1.

Since the series converges uniformly on any closed subinterval of (−1,1), we can
integrate term by term [6, p. 150, Th. 7.16] to get

ln(1− x) =
∫ x

0

−1
1− t

dt =−
∞

∑
n=0

∫ x

0
tn dt =−

∞

∑
n=0

xn+1

n+1
=−

∞

∑
n=1

xn

n
.

Replacing x with −x yields

ln(1+ x) =−
∞

∑
n=1

(−1)nxn

n
.

Following [1, p. 21], observe that

1
2 ln

1+ x
1− x

= 1
2

∞

∑
n=1

xn

n
[1− (−1)n] =

∞

∑
n=1

x2n−1

2n−1
;

replace x with 1/(2x+1), which lies in (0,1) for x > 0, to obtain

1
2 ln
(

1+
1
x

)
=

∞

∑
n=1

1
(2n−1)(2x+1)2n−1 ;

multiply both sides by (2x+1) so that

(x+1/2) ln(1+1/x) =
∞

∑
n=1

1
(2n−1)(2x+1)2n−2 ,

and subtract one from both sides to yield

g(x) := (x+1/2) ln(1+1/x)−1 =
∞

∑
n=2

1
(2n−1)(2x+1)2n−2

=
∞

∑
n=1

1
(2n+1)(2x+1)2n .
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Using the definition of g, it is easy to check that g′′(x)> 0, which implies g is convex.
From the series, we see that g is positive and strictly decreasing. Furthermore, since
2n+1≥ 3 for n≥ 1, we can upper bound the series by writing

0 < g(x)≤
∞

∑
n=1

1
3(2x+1)2n =

1
3

∞

∑
n=1

( 1
(2x+1)2

)n

=
1

12x(x+1)
,

where the last step follows by the geometric series formula.

3.2. A Simpler Upper Bound

The logarithm of the upper bound in (3) can be written as

x lnx+ lnC− (1/2) lnx− x+ 1
12x .

Since the derivative of the last three terms,

− 1
2x −1− 1

12x2 ,

is negative, the sum of these terms themselves is maximized at the leftmost value of
x > 0 under consideration. For example, if we restrict x≥ x0 = 1/2, we have

lnΓ(x)≤ x lnx+ lnC− (1/2) ln(1/2)− (1/2)+1/6, x≥ 1/2,

or
Γ(x)≤ exp

[
lnC− (1/2) ln(1/2)− (1/2)+1/6

]
xx, x≥ 1/2.

Since C =
√

2π , the exponential factor is less than 2.54003736144178. In particular,
Γ(x)≤ 3xx for x≥ 1/2 is used in Vershynin [8, p. 26].

4. Convergence to the Euler–Mascheroni Constant

To establish the convergence of

γn :=
n

∑
k=1

1
k
− lnn,

it suffices to show that γn is nonincreasing and bounded below [6, p. 55, Th. 3.14].
The key is the simple pair of inequalities for k ≥ 1,

1
k+1

≤
∫ k+1

k

1
t

dt ≤ 1
k
,
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which are equivalent to
1

k+1
≤ ln

k+1
k
≤ 1

k
. (5)

From the left-hand inequality with k replaced with k−1, we obtain

1
k
− ln

k
k−1

≤ 0

for k ≥ 2. Since

lnn =
n

∑
k=2

[lnk− ln(k−1)] =
n

∑
k=2

ln
k

k−1
,

we can write

γn = 1+
n

∑
k=2

1
k
−

n

∑
k=2

ln
k

k−1
= 1+

n

∑
k=2

(
1
k
− ln

k
k−1

)
.

Since the terms in this last sum are negative, γn is decreasing. To lower bound the
sum, we introduce the smaller sequence

γ̃n := γn− ln
n+1

n
=

( n

∑
k=1

1
k
− lnn

)
− ln

n+1
n

=
n

∑
k=1

1
k
− ln(n+1)

=
n

∑
k=1

1
k
− [ln(k+1)− lnk]

=
n

∑
k=1

(
1
k
− ln

k+1
k

)
.

The terms of this sum are positive on account of the right-hand inequality in (5).
Hence, γn ≥ γ̃n ≥ 0. Since γn is monotonically decreasing and bounded below, it
converges to some limit γ . Furthermore, since

γn− γ̃n = ln
n+1

n
= ln(1+1/n)→ ln1 = 0,

it follows that γ̃n converges to the same limit as γn
5

5 Write
lim
n→∞

γ̃n = lim
n→∞

[
( γ̃n− γn)+ γn

]
= lim

n→∞
( γ̃n− γn)+ lim

n→∞
γn = 0+ γ = γ,

where the second equal sign is justified by the fact that the limit of the sum on the left is equal to the sum
of the limits on the right because the individual limits exist.
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On account of the fact that γ̃n is increasing and γn is decreasing, we have that
γ̃n ≤ γ ≤ γn. Hence, the average of γ̃n and γn will be closer to γ than either one of
them. Consider the approximation

γ̃n + γn

2
=

n

∑
k=1

1
k
− ln(n+1)+ lnn

2
.

This formula on the right with n = 15 yields 0.578, while the true value is γ = 0.577
to three significant digits. In contrast, γ15 = 0.610 and γ̃15 = γ15− ln(16/15) = 0.546.
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