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Permutations, the Parity Theorem, and Determinants
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Abstract

The Parity Theorem says that whenever an even (resp. odd) permutation is ex-
pressed as a composition of transpositions, the number of transpositions must be
even (resp. odd). The purpose of this article is to give a simple definition of when
a permutation is even or odd, and develop just enough background to prove the par-
ity theorem. Several examples are included to illustrate the use of the notation and
concepts as they are introduced. We then define the determinant in terms of the par-
ity of permutations. We establish basic properties of the determinant. In particular,
we show that detBA = detB detA, and we show that A is nonsingular if and only if
detA ̸= 0. The characteristic polynomial is introduced and simple properties of its
coefficients derived. The formula for the directional derivative of the determinant is
also established.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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1. What is a Permutation?

A permutation is an invertible function that maps a finite set to itself.1 If we
specify an order for the elements in the finite set and apply a given permutation to
each point in order, then the function values we generate simply list all the points
of the set in a new order. In this way, a permutation specifies a reordering of the
elements of a finite set. Without loss of generality, it suffices to take as our finite set
{1, . . . ,n} for some positive, finite integer n.

A permutation ϕ on {1, . . . ,n} can be described explicitly with the 2×n matrix(
1 · · · n

ϕ1 · · · ϕn

)
.

The top row lists the first n integers in their usual order, and the bottom row lists them
in a new order.

Example 1. On {1,2,3,4,5},

ϕ :=
(

1 2 3 4 5
4 3 5 1 2

)
is the permutation such that

ϕ1 = 4, ϕ2 = 3, ϕ3 = 5, ϕ4 = 1, and ϕ5 = 2.

Similarly,

ψ :=
(

1 2 3 4 5
4 5 3 1 2

)
is the permutation such that

ψ1 = 4, ψ2 = 5, ψ3 = 3, ψ4 = 1, and ψ5 = 2.

2. Cycles

A cycle is an especially simple kind of permutation. Given k distinct elements in
{1, . . . ,n}, say x1, . . . ,xk, we write ϕ = (x1, . . . ,xk) if ϕ takes x1 to x2, x2 to x3, . . . ,
xk−1 to xk, and xk to x1, while leaving all other inputs unchanged. In other words,

(x1, . . . ,xi, . . . ,xk)xi = xi+1, where xk+1 := x1, (1)

1 To say that a function is invertible means that it is both one-to-one and onto. One-to-one means that
no pair of points can map to a common destination point. Onto means that every point is the image of
some point.
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and
(x1, . . . ,xi, . . . ,xk)x = x, if x /∈ {x1, . . . ,xk}. (2)

Such a permutation is called a k-cycle.
The support of a k-cycle ϕ = (x1, . . . ,xk) is suppϕ := {x1, . . . ,xk}. Formula (2)

says that all other values of x are fixed points of the cycle.

Remarks. (i) From (1), it is apparent that for x ∈ suppϕ , ϕkx = x. Of course, for
x /∈ suppϕ , (2) also implies ϕkx = x. Hence, for a k-cycle ϕ , we always have that ϕk

is the identity, which we denote by I . In particular, for k = 2, (x1,x2)(x1,x2) = I ,
which says that a 2-cycle is its own inverse.

(ii) The cycle notation is not unique in the sense that any circular shift of the
sequence x1, . . . ,xk yields the same permutation; i.e., (x1, . . . ,xk), (x2, . . . ,xk,x1),
. . . , and (xk,x1, . . . ,xk−1) all define the same permutation. In particular, note that
(x1,x2) = (x2,x1).

Example 2. On {1,2,3,4,5,6,7,8,9}, consider the 3-cycle ψ := (1,2,6) and the
4-cycle ϕ := (3,5,7,6). The following calculations illustrate how to compute with
cycle notation:

ϕ7 = (3,5,7,6)7 = 6
ϕ6 = (3,5,7,6)6 = 3
ψ6 = (1,2,6)6 = 1

ψϕ6 = (1,2,6)(3,5,7,6)6 = (1,2,6)3 = 3
ϕψ6 = (3,5,7,6)(1,2,6)6 = (3,5,7,6)1 = 1

ϕ4 = (3,5,7,6)4 = 4
ψ4 = (1,2,6)4 = 4

ψϕ4 = (1,2,6)(3,5,7,6)4 = (1,2,6)4 = 4
ϕψ4 = (3,5,7,6)(1,2,6)4 = (3,5,7,6)4 = 4.

In particular, notice that ψϕ6 = 3 ̸= 1 = ϕψ6. So in general, cycles do not commute.

Proposition 3. If cycles ψ1, . . . ,ψm have pairwise disjoint supports, then

ψ1 · · ·ψmx =


ψix, x ∈ suppψi,

x x /∈
m⋃

i=1

suppψi.

Furthermore, the ψi commute and can be applied in any order.
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Proof. Fix a value of i in the range from 1 to m. If x ∈ suppψi, then ψix also
belongs to suppψi. Therefore, x and ψix do not belong to the supports of the other
cycles; i.e., x and ψix are fixed points of the other cycles. Hence, we can write

ψ1 · · ·ψmx = ψ1 · · ·ψm−1x, since x is a fixed point of ψm,

= ψ1 · · ·ψm−2x, since x is a fixed point of ψm−1,

=
...

= ψ1 · · ·ψi−1ψix

= ψ1 · · ·ψi−2ψix, since ψix is a fixed point of ψi−1,

= ψ1 · · ·ψi−3ψix, since ψix is a fixed point of ψi−2,

=
...

= ψ1ψix

= ψix.

We can similarly argue that ψm · · ·ψ1x =ψix. In fact, applying the cycles in any order
to x ∈ suppψi always results in ψix.

Now suppose x does not belong to the support of any ψi. Then x is a fixed point
of every ψi and we can write ψ1 · · ·ψmx = ψ1 · · ·ψm−1x = · · ·= ψ1x = x. Again, we
can apply the cycles in any order; e.g., ψm · · ·ψ1x = x.

Proposition 3 is important, because we will see later that every permutation can
be decomposed into a composition of cycles with pairwise disjoint supports.

2.1. Transpositions

A transposition is a 2-cycle such as (x,y), where x ̸= y. Thus, (x,y)x = y and
(x,y)y = x, while for all z ̸= x,y, we have (x,y)z = z. As mentioned in the Remarks
above, a transposition is its own inverse, and (x,y) = (y,x).

Lemma 4. Let ψ be a k-cycle, and let τ be a transposition whose support is a
subset of the support of ψ . Then ψτ is equal to the composition of two cycles with
disjoint supports.

Proof. Suppose ψ = (x1, . . . ,xi, . . . ,x j, . . . ,xk) and τ = (xi,x j). It is easy to check
that

ψτ = (x1, . . . ,xi,x j+1, . . . ,xk)(xi+1, . . . ,x j),

which is the composition of two cycles with disjoint supports.
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Lemma 5. Let ψ and η be cycles with disjoint supports, and let τ be a transpo-
sition whose support intersects the supports of both ψ and η . Then ψητ is a single
cycle whose support is suppψ ∪ suppη .

Proof. Suppose ψ = (x1, . . . ,xi, . . . ,xk), η = (y1, . . . ,y j, . . . ,ym), and τ = (xi,y j).
It is easy to check that

ψητ = (x1, . . . ,xi,y j+1, . . . ,ym,y1, . . . ,y j,xi+1, . . . ,xk),

which is a single cycle whose support is suppψ ∪ suppη .

3. Orbits

Let ϕ be a permutation on {1, . . . ,n}. Given x ∈ {1, . . . ,n}, consider the sequence
x,ϕx,ϕ2x, . . . ,ϕnx. These n+ 1 values all belong to {1, . . . ,n}. So there must be at
least two values that are the same, say ϕkx = ϕmx for some 0 ≤ k < m ≤ n. Now
apply ϕ−1 to both sides k times to get x = ϕm−kx. Hence, for any x, there is a
smallest positive integer ℓ (depending on x) for which ϕℓx = x. The orbit of x (under
ϕ) is the set Ox := {x,ϕx, . . . ,ϕℓ−1x}. If ℓ= 1, the orbit is just the singleton set {x}.
A singleton orbit is a fixed point.

Example 6. Consider the permutation ϕ of Example 1. We see that O1 = {1,4}
and O2 = {2,3,5}. However, O3 = O2, O4 = O1, and O5 = O2. The orbits of the
permutation ψ of Example 1 are O1 = {1,4}, O2 = {2,5}, and O3 = {3}, while
O4 = O1 and O5 = O2.

For each x ∈ {1, . . . ,n} we can determine its orbit Ox, and since each x belongs
to its own orbit; i.e., x ∈ Ox, we can write

{1, . . . ,n}=
n⋃

x=1

Ox.

Consider two orbits Oy and Oz for y ̸= z. We show below that if they are not disjoint,
then they are the same. If Oy = Oz, then the above union can be simplified to

{1, . . . ,n}=
n⋃

x=1
x ̸=z

Ox.

Proceeding in this way, after a finite number of steps, we obtain a sequence of distinct
points y1, . . . ,yn∗ with

{1, . . . ,n}=
n∗⋃

i=1

Oyi , (3)
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where n∗ ≤ n and the orbits Oy1 , . . . ,Oyn∗ are pairwise disjoint. If n−n∗ is even, we
say that the permutation ϕ is even, and we write sgnϕ = 1. If n−n∗ is odd, we say
that the permutation ϕ is odd, and we write sgnϕ =−1. The quantity sgnϕ is called
the sign, signature, or parity of the permutation ϕ .

Example 7. Consider the identity permutation, which we denote by I . For
each x, I x = x, and so the orbit of x under I is {x}. Hence, the number of disjoint
orbits of I is n∗ = n. Since n−n∗ = 0 is even, the identity is an even permutation,
and sgnI = 1.

Example 8. Let us determine the disjoint orbits of a k-cycle ϕ = (x1, . . . ,xk). If
we start with x1 and apply ϕ over and over using (1), we find that Ox1 = {x1, . . . ,xk}=
suppϕ . If fact, starting with x2 or x3, . . . , or xk, we find they all have the same orbit,
suppϕ . On the other hand if we start with an x /∈ suppϕ , we have by (2) that ϕx = x.
Hence, the orbit of such an x is the singleton set {x}. We have thus shown that for
a k-cycle, the number of disjoint orbits is n∗ = 1+ (n− k). Since this formula is
equivalent to n−n∗ = k−1, the sign of a k-cycle is 1 if k is odd and −1 if k is even.

We now show that if two orbits are not disjoint, they are the same. Suppose
Oy ∩ Oz ̸= ∅, and let x denote a point in Oy ∩ Oz. Since x ∈ Oy, we must have
x = ϕry for some nonnegative integer r. Since x ∈ Oz, we must have x = ϕsz for
some nonnegative integer s. Hence, ϕry= ϕsz, which implies y= ϕs−rz. This further
implies ϕmy = ϕm+s−rz ∈ Oz for all m; hence, Oy ⊂ Oz. Similarly, writing z = ϕr−sy
implies Oz ⊂ Oy.

4. The Parity Theorem

It is easy to write a k-cycle as a composition of transpositions. Consider the
formula

(x1, . . . ,xk) = (x1,xk)(x1,xk−1) · · ·(x1,x3)(x1,x2). (4)

Notice that each of x2, . . . ,xk appears in only one factor, while x1 appears in every
factor. If we apply the right-hand side to x1, we get

(x1,xk)(x1,xk−1) · · ·(x1,x3)(x1,x2)x1 = (x1,xk)(x1,xk−1) · · ·(x1,x3)x2

= x2,

since x2 is not in the supports of any of the remaining transpositions. If we start with
x2, we get

(x1,xk)(x1,xk−1) · · ·(x1,x4)(x1,x3)(x1,x2)x2 = (x1,xk)(x1,xk−1) · · ·(x1,x4)(x1,x3)x1

= (x1,xk)(x1,xk−1) · · ·(x1,x4)x3

= x3.
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Continuing in this way, we see that (4) holds.
Notice that in (4), there are k−1 transpositions. We saw earlier that a k-cycle ϕ

has n∗ = 1+(n− k) orbits so that k− 1 = n− n∗ determines the sign of ϕ . Hence,
it is possible to write a k-cycle ϕ as a composition of transpositions such that the
number of transpositions is even if sgnϕ = 1, and the number of transpositions is
odd if sgnϕ =−1. However, there are many ways to write a k-cycle as compositions
of different numbers of transpositions.

Example 9. On {1,2,3,4,5}, we can use (4) to write the 3-cycle (1,2,3) as
(1,2,3) = (1,3)(1,2). Since k = 3 is odd, k−1 = 2 is even. Hence, it is no surprise
that we can write a 3-cycle as the composition of 2 (an even number) transpositions.
However, since (4,5)(4,5) = I , we can also write (1,2,3) = (1,3)(1,2)(4,5)(4,5),
which is another way to write this 3 cycle as an even number of transpositions.

4.1. Decomposition of Permutations into Cycles with Disjoint Supports

For an arbitrary permutation ϕ , once we have identified its disjoint orbits we can
associate each orbit with a cycle in the following way. The disjoint orbit decomposi-
tion (3) suggests that we put

ψix :=
{

ϕx, x ∈ Oyi ,
x, otherwise. (5)

Note that the ψi are cycles and have disjoint supports. We can further write

ϕ = ψ1 · · ·ψn∗ , (6)

which expresses ϕ as the composition of n∗ cycles with disjoint supports. The fact
that (6) holds follows from Proposition 3 and the definition (5).

Parity Theorem. Whenever an even (resp. odd) permutation is expressed as a
composition of transpositions, the number of transpositions must be even (resp. odd).

Proof. Consider a permutation ϕ with n∗ disjoint orbits and corresponding rep-
resentation as cycles with disjoint supports as in (6). Suppose also that ϕ = τ1 · · ·τm,
where each τi is a transposition. Recalling that a transposition is its own inverse,
write

I = ϕϕ
−1 = (ψ1 · · ·ψn∗)(τ1 · · ·τm)

−1 = (ψ1 · · ·ψn∗)(τm · · ·τ1) = ψ1 · · ·ψn∗τm · · ·τ1.

Consider the expression ψ1 · · ·ψn∗τm. Since the supports of the ψi partition {1, . . . ,n},
the two points in the support of τm must belong to the supports of the ψi. If τm =
(u,v), there are two cases to consider. First, there is the case that u and v both be-
long to the support of a single ψi. Second, u belongs to the support of some ψi,

7



PermutationsAndDeterminants.tex 8/11/2015, 10/25/2023, November 3, 2023

while v belongs to the support of some other ψ j with j > i.2 In the first case, we use
Proposition 3 and Lemma 4 to write

ψ1 · · ·ψn∗τm = ψ1 · · ·ψi−1ψi+1 · · ·ψn∗(ψiτm),

where ψiτm is equal to the composition of two cycles with disjoint supports created
from suppψi. Hence, the above expression is a permutation with n∗ + 1 pairwise
disjoint orbits. In the second case, we use Proposition 3 and Lemma 5 to write

ψ1 · · ·ψn∗τm = ψ1 · · ·ψi−1ψi+1 · · ·ψ jψ j+1 · · ·ψn∗(ψiψ jτm),

where ψiψ jτm is equal to a single cycle whose support is the union of the supports of
ψi and ψ j. Hence, the above expression is a permutation with n∗−1 pairwise disjoint
orbits. Since we do not know which of the two cases τm falls into, let us denote the
new number of disjoint orbits by n∗+σm, where σm =±1.

Now that we have determined the number of disjoint orbits of ψ1 · · ·ψn∗τm, we
can determine the number of disjoint orbits of ψ1 · · ·ψn∗τmτm−1 as n∗+σm +σm−1,
and so on. The number of disjoint orbits of I = ψ1 · · ·ψn∗τm · · ·τ1 can be written as

n∗+
m

∑
k=1

σk,

where each σk =±1. The sign of I = ψ1 · · ·ψn∗τm · · ·τ1 is determined by whether

n−
(

n∗+
m

∑
k=1

σk

)
= (n−n∗)−

m

∑
k=1

σk

is even or odd. However, we know from Example 7 that the identity is even. This
means that (n− n∗) minus the above sum has to be even. Therefore, if (n− n∗) is
even, the above sum must be even, while if (n− n∗) is odd, the above sum must
be odd. Now observe that if m is even, the possible values for the above sum are
m,m−2, . . . ,4,2,0,−2,−4, . . . ,−m, which are all even, while if m is odd the possible
values are m,m−2, . . . ,3,1,−1,−3, . . . ,−m, which are all odd. Hence, if (n−n∗) is
even, i.e., if the original permutation ϕ is even, then m must be even, while if ϕ is
odd, then m must be odd.

Corollary 10. If ϕ and ψ are permutations, then sgn(ϕψ)= sgn(ϕ)sgn(ψ), and
is therefore equal to sgn(ψϕ). In particular, if ψ is itself a transposition (so that
sgn(ψ) =−1), sgn(ϕψ) =−sgn(ϕ).

2 There is no loss of generality in assuming j > i because (u,v) is equal to (v,u).
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Proof. We only prove sgn(ϕψ) = sgn(ϕ)sgn(ψ) since the other parts of the
corollary follow immediately from this. Suppose ϕ = τ1 · · ·τm and ψ = θ1 · · ·θk,
where the τi and θ j are transpositions. By the Parity Theorem, sgn(ϕψ) =± accord-
ing to whether m+ k is even or odd. Similarly for sgn(ϕ) and m and sgn(ψ) and k.
It is easy to verify sgn(ϕψ) = sgn(ϕ)sgn(ψ) for each of the four possibilities of m
and k being even/odd.

5. Determinants

If A is an n×n matrix with columns a(1), . . . ,a(n), then the ith row of the column
vector a( j), denoted by ai( j), is the i, j entry of A. The determinant of A is

detA := ∑
ϕ

sgn(ϕ)a1(ϕ1) · · ·an(ϕn), (7)

where the sum is over all possible n! permutations ϕ of the n integers {1, . . . ,n}.

5.1. Simple Properties

If every entry in A is multiplied by a constant c, then every term in (7) will have
a factor of cn. Thus, det(cA) = cn detA. In particular, det(−A) = (−1)n detA.

We show that the determinant of a diagonal matrix is the product of its diagonal
entries. To be precise, a matrix A is diagonal if ai( j) = 0 whenever j ̸= i. Consider
a typical term in (7). If ϕ ̸= I , then for some i, ϕi ̸= i, and so the factor ai(ϕi) = 0
when A is diagonal. Hence, the only term in (7) that is not zero is the term with
ϕ = I , and that term is equal to a1(1) · · ·an(n) since sgn(I ) = 1.

More generally, we have the same result for triangular matrices.

Proposition 11. The determinant of a triangular matrix is the product of its di-
agonal entries.

Proof. To begin, recall that A is upper (resp. lower) triangular if the elements
below (resp. above) the main diagonal are zero. Without loss of generality, assume A
is upper triangular so that ai( j) = 0 for i > j. The result will follow if we can show
that all terms in (7) with ϕ ̸= I have zero as a factor. If ϕ ̸= I , then for some i, we
must have i > ϕi.3 and for such i, since A is upper triangular, ai(ϕi) = 0.

Recall that the transpose of A, denoted by AT, is defined by aTi ( j) := a j(i). Thus,

det(AT) = ∑
ϕ

sgn(ϕ)aϕ1(1) · · ·aϕn(n),

3 To see this, consider the decomposition (6). If ϕ ̸= I , some ψi must be a k-cycle with k ≥ 2, say
ψi = (x1, . . . ,xk). These x j are all distinct, and one is the largest, say xl . Then ϕxl = ψixl < xl .
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Proposition 12. The determinant of a matrix is equal to the determinant of its
transpose.

Proof. First write

detA = ∑
ϕ

sgn(ϕ)
n

∏
i=1

ai(ϕi)

and make the change of variable i = ϕ−1 j to get

detA = ∑
ϕ

sgn(ϕ)
n

∏
j=1

aϕ−1 j( j).

Now replace ϕ by ψ−1 and note the sgn(ψ−1) = sgn(ψ). Thus,

detA = ∑
ψ

sgn(ψ)
n

∏
j=1

aψ j( j) = ∑
ψ

sgn(ψ)aψ1(1) · · ·aψn(n).

5.2. Determinant of a Product

Fix a particular column index u, and consider a typical term in (7). This term
contains the factor ai(u) for some i,4 and no other factor in that term involves an
entry from the column a(u). Hence, when all the columns of A are fixed except for
column u, detA is linear in column u.

Let u and v be two distinct integers from {1, . . . ,n}, and let τ := (u,v) be the
transposition that interchanges u and v. Let B denote the matrix with columns b( j) :=
a(τ j). Then

b( j) := a(τ j) =

 a( j), j /∈ {u,v},
a(v), j = u,
a(u), j = v.

In other words, B is obtained from A by interchanging columns u and v. We claim
that detB =−detA. To see this, write

detB = ∑
ϕ

sgn(ϕ)b1(ϕ1) · · ·bn(ϕn)

= ∑
ϕ

sgn(ϕ)a1(τϕ1) · · ·an(τϕn)

= ∑
ψ

sgn(τ−1
ψ)a1(ττ

−1
ψ) · · ·an(ττ

−1
ψ)

= ∑
ψ

sgn(τ−1
ψ)a1(ψ) · · ·an(ψ)

4 The value of i is ϕ−1u.
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= sgn(τ−1)∑
ψ

sgn(ψ)a1(ψ) · · ·an(ψ)

= −∑
ψ

sgn(ψ)a1(ψ) · · ·an(ψ)

= −detA,

where the third equality follows by substituting ϕ = τ−1ψ; the fifth equality follows
because the sign of a composition of permutations is the product of their signs by
Corollary 10; and the sixth equality follows because transpositions are odd.

Now suppose A has two equal columns, and B is obtained by interchanging those
two columns. Then by the preceding paragraph, detB = −detA. But since B = A,
detB = detA. Therefore, detA = 0.

We showed above that if b( j) = a(τ j) for some transposition τ , then detB =
−detA. What if b( j) = a(ϕ j) for some arbitrary permutation ϕ? Writing ϕ in terms
of transpositions, say ϕ = τ1 · · ·τk, we see that detB = (−1)k detA = sgn(ϕ)detA.

Theorem 13. detBA = detB detA.

Proof. It is convenient to write detA in terms of its columns. We use the notation
∆(a(1), . . . ,a(n)) = detA. If B is another matrix with columns b(1), . . . ,b(n), then
the columns of BA are Ba(1), . . . ,Ba(n), and

detBA = ∆(Ba(1), . . . ,Ba(n)).

Now recall that

a( j) =
n

∑
i=1

ai( j)e(i), j = 1, . . . ,n.

Write

detBA = ∆

([
B

n

∑
i=1

ai(1)e(i)
]
,Ba(2), . . . ,Ba(n)

)
=

n

∑
i=1

ai(1)∆(Be(i),Ba(2), . . . ,Ba(n)).

Repeating this calculation for a(2), . . . ,a(n) yields

detBA =
n

∑
i1=1

· · ·
n

∑
in=1

ai1(1) · · ·ain(n)∆(Be(i1), . . . ,Be(in))

=
n

∑
i1=1

· · ·
n

∑
in=1

ai1(1) · · ·ain(n)∆(b(i1), . . . ,b(in)).
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Among the n-tuples (i1, . . . , in), if the ik are not distinct, then ∆(b(i1), . . . ,b(in)) is
the determinant of a matrix with two or more equal columns and is therefore zero.
Otherwise, (i1, . . . , in) = (ϕ1, . . . ,ϕn) for some permutation ϕ . Hence,

detBA = ∑
ϕ

aϕ1(1) · · ·aϕn(n)∆(b(ϕ1), . . . ,b(ϕn))

= ∑
ϕ

aϕ1(1) · · ·aϕn(n)sgn(ϕ)detB

= detB∑
ϕ

sgn(ϕ)a1(ϕ
−11) · · ·an(ϕ

−1n)

= detB∑
ψ

sgn(ψ−1)a1(ψ1) · · ·an(ψn)

= detB∑
ψ

sgn(ψ)a1(ψ1) · · ·an(ψn)

= detB detA.

Corollary 14. detA = 0 if and only if A is nonsingular.

Proof. If A is nonsingular, then 1 = detI = det(A−1A) = (detA−1)(detA) implies
detA ̸= 0.

Now suppose A is singular. Then the columns of A are linearly dependent.
Without loss of generality, suppose a(n)+∑

n−1
j=1 c ja( j) = 0 for some coefficients c j.

Hence,

0 = ∆
(
a(1), . . . ,a(n−1),0

)
= ∆

(
a(1), . . . ,a(n−1),a(n)+

n−1

∑
j=1

c ja( j)
)

= ∆
(
a(1), . . . ,a(n−1),a(n)

)
+

n−1

∑
j=1

c j∆
(
a(1), . . . ,a(n−1),a( j)

)
= detA+0,

since in the sum over j, the jth term involves the determinant of a matrix whose
column j and column n are the same. Such a determinant is zero.

5.3. Characteristic Polynomial

The characteristic polynomial of a matrix A is

ξ (λ ) := det(λ I−A),

12



PermutationsAndDeterminants.tex 8/11/2015, 10/25/2023, November 3, 2023

where I denotes the identity matrix; that is the diagonal matrix with ones along the
diagonal. If we put M := λ I−A, then Mi(i) = λ − ai(i), while for j ̸= i, we have
Mi( j) =−ai( j). Thus, the term in (7) with ϕ = I is

(λ −a1(1)) · · ·(λ −an(n)), (8)

which is a polynomial in λ of degree n. We show below that for all other ϕ , the cor-
responding term in (7) is a polynomial of degree at most n−2. Hence, the coefficient
of λ n−1 in the polynomial ξ (λ ) is the coefficient of λ n−1 in (8). The coefficient of
λ n−1 in (8) is seen to be −(a1(1)+ · · ·+ an(n)). The sum of the diagonal elements
of a matrix is called the trace, and is denote by

tr(A) :=
n

∑
i=1

ai(i).

Thus,
det(λ I−A) = λ

n − tr(A)λ n−1 + · · ·+(−1)n detA,

where the formula for the last term follows by observing that ξ (0) = det(−A) =
(−1)n detA.

For all the ϕ ̸= I in (7), there is some i with ϕi ̸= i; but since ϕ is onto, there
must be some j ̸= i with ϕ j = i. In other words, such terms in (7) must include at
least two factors off the diagonal and result in a polynomial of degree at most n−2.

5.3.1. Differentiation of the Determinant

Since
det(I− tA) = tn

ξ (1/t) = 1− tr(A)t + · · ·+(−t)n detA,

we see that
pA(t) := det(I+ tA) = 1+ t tr(A)+ · · ·+ tn detA.

It follows that

lim
t→0

pA(t)− pA(0)
t

= tr(A).

For convenience of notation, put f (B) := detB. If B is invertible, then

f (B+ tA) = det(B+ tA) = det(B)det(I+ tB−1A) = det(B)pB−1A(t).

The directional derivative, or Gâteaux derivative, of f at B in the direction A is

(D f )(B,A) := lim
t→0

f (B+ tA)− f (B)
t

= det(B) tr(B−1A).

13
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With a bit more work, we can show that the Fréchet derivative of f at B applied to
A is equal to det(B) tr(B−1A). To prove this, it again suffices to treat the case B = I.
We must show that given ε > 0, for sufficiently small ∥A∥, we have

| f (I+A)− f (I)− tr(A)| ≤ ε∥A∥. (9)

Without loss of generality, we use the infinity norm on A; i.e., ∥A∥ = maxi, j |Ai j|.
Since

f (I+A) = (1+A1,1) · · ·(1+An,n)+ ∑
σ ̸=I

sgn(σ)(I+A)1(σ1) · · ·(I+A)n(σn)

= 1+ tr(A)+other terms,

where every term in “other terms” includes at least two factors of the form Ai j with
i ̸= j. Hence,

| f (I+A)− f (I)− tr(A)| ≤ K2∥A∥2 + · · ·+Kn∥A∥n + ∑
σ ̸=I

(1+∥A∥)n−2∥A∥2

=

[
K2∥A∥+ · · ·+Kn∥A∥n−1 + ∑

σ ̸=I

(1+∥A∥)n−2∥A∥
]
∥A∥.

For sufficiently small ∥A∥, the sum in brackets is less than ε , and so (9) follows.
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