Permutations, the Parity Theorem, and Determinants

John A. Gubner
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Abstract

The Parity Theorem says that whenever an even (resp. odd) permutation is expressed as a composition of transpositions, the number of transpositions must be even (resp. odd). The purpose of this article is to give a simple definition of when a permutation is even or odd, and develop just enough background to prove the parity theorem. Several examples are included to illustrate the use of the notation and concepts as they are introduced. We then define the determinant in terms of the parity of permutations. We establish basic properties of the determinant. In particular, we show that $\operatorname{det} B A=\operatorname{det} B \operatorname{det} A$, and we show that A is nonsingular if and only if $\operatorname{det} A \neq 0$. The characteristic polynomial is introduced and simple properties of its coefficients derived. The formula for the directional derivative of the determinant is also established.

If you find this writeup useful, or if you find typos or mistakes, please let me know at John.Gubner@wisc.edu

Contents

1 What is a Permutation? 2
2 Cycles 2
2.1 Transpositions 4
3 Orbits 5
4 The Parity Theorem 6
4.1 Decomposition of Permutations into Cycles with Disjoint Supports 7
5 Determinants 9
5.1 Simple Properties 9
5.2 Determinant of a Product 10
5.3 Characteristic Polynomial 12
5.3.1 Differentiation of the Determinant 13
References 14
Index 15

1. What is a Permutation?

A permutation is an invertible function that maps a finite set to itself ${ }_{\square}^{1}$ If we specify an order for the elements in the finite set and apply a given permutation to each point in order, then the function values we generate simply list all the points of the set in a new order. In this way, a permutation specifies a reordering of the elements of a finite set. Without loss of generality, it suffices to take as our finite set $\{1, \ldots, n\}$ for some positive, finite integer n.

A permutation φ on $\{1, \ldots, n\}$ can be described explicitly with the $2 \times n$ matrix

$$
\left(\begin{array}{ccc}
1 & \cdots & n \\
\varphi 1 & \cdots & \varphi n
\end{array}\right) .
$$

The top row lists the first n integers in their usual order, and the bottom row lists them in a new order.

Example 1. On $\{1,2,3,4,5\}$,

$$
\varphi:=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 5 & 1 & 2
\end{array}\right)
$$

is the permutation such that

$$
\varphi 1=4, \quad \varphi 2=3, \quad \varphi 3=5, \quad \varphi 4=1, \quad \text { and } \quad \varphi 5=2 .
$$

Similarly,

$$
\psi:=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{array}\right)
$$

is the permutation such that

$$
\psi 1=4, \quad \psi 2=5, \quad \psi 3=3, \quad \psi 4=1, \quad \text { and } \quad \psi 5=2 .
$$

2. Cycles

A cycle is an especially simple kind of permutation. Given k distinct elements in $\{1, \ldots, n\}$, say x_{1}, \ldots, x_{k}, we write $\varphi=\left(x_{1}, \ldots, x_{k}\right)$ if φ takes x_{1} to x_{2}, x_{2} to x_{3}, \ldots, x_{k-1} to x_{k}, and x_{k} to x_{1}, while leaving all other inputs unchanged. In other words,

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right) x_{i}=x_{i+1}, \quad \text { where } x_{k+1}:=x_{1} \tag{1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right) x=x, \quad \text { if } x \notin\left\{x_{1}, \ldots, x_{k}\right\} . \tag{2}
\end{equation*}
$$

\]

Such a permutation is called a \boldsymbol{k}-cycle.
The support of a k-cycle $\varphi=\left(x_{1}, \ldots, x_{k}\right)$ is $\operatorname{supp} \varphi:=\left\{x_{1}, \ldots, x_{k}\right\}$. Formula (2) says that all other values of x are fixed points of the cycle.

Remarks. (i) From 11, it is apparent that for $x \in \operatorname{supp} \varphi, \varphi^{k} x=x$. Of course, for $x \notin \operatorname{supp} \varphi$, 2) also implies $\varphi^{k} x=x$. Hence, for a k-cycle φ, we always have that φ^{k} is the identity, which we denote by \mathscr{I}. In particular, for $k=2,\left(x_{1}, x_{2}\right)\left(x_{1}, x_{2}\right)=\mathscr{I}$, which says that a 2 -cycle is its own inverse.
(ii) The cycle notation is not unique in the sense that any circular shift of the sequence x_{1}, \ldots, x_{k} yields the same permutation; i.e., $\left(x_{1}, \ldots, x_{k}\right),\left(x_{2}, \ldots, x_{k}, x_{1}\right)$, \ldots, and $\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)$ all define the same permutation. In particular, note that $\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$.

Example 2. On $\{1,2,3,4,5,6,7,8,9\}$, consider the 3 -cycle $\psi:=(1,2,6)$ and the 4 -cycle $\varphi:=(3,5,7,6)$. The following calculations illustrate how to compute with cycle notation:

$$
\begin{aligned}
\varphi 7 & =(3,5,7,6) 7=6 \\
\varphi 6 & =(3,5,7,6) 6=3 \\
\psi 6 & =(1,2,6) 6=1 \\
\psi \varphi 6 & =(1,2,6)(3,5,7,6) 6=(1,2,6) 3=3 \\
\varphi \psi 6 & =(3,5,7,6)(1,2,6) 6=(3,5,7,6) 1=1 \\
\varphi 4 & =(3,5,7,6) 4=4 \\
\psi 4 & =(1,2,6) 4=4 \\
\psi \varphi 4 & =(1,2,6)(3,5,7,6) 4=(1,2,6) 4=4 \\
\varphi \psi 4 & =(3,5,7,6)(1,2,6) 4=(3,5,7,6) 4=4 .
\end{aligned}
$$

In particular, notice that $\psi \varphi 6=3 \neq 1=\varphi \psi 6$. So in general, cycles do not commute.
Proposition 3. If cycles $\psi_{1}, \ldots, \psi_{m}$ have pairwise disjoint supports, then

$$
\psi_{1} \cdots \psi_{m} x=\left\{\begin{array}{rl}
\psi_{i} x, & x \in \operatorname{supp} \psi_{i} \\
x & x \notin \bigcup_{i=1}^{m} \operatorname{supp} \psi_{i}
\end{array}\right.
$$

Furthermore, the ψ_{i} commute and can be applied in any order.

Proof. Fix a value of i in the range from 1 to m. If $x \in \operatorname{supp} \psi_{i}$, then $\psi_{i} x$ also belongs to supp ψ_{i}. Therefore, x and $\psi_{i} x$ do not belong to the supports of the other cycles; i.e., x and $\psi_{i} x$ are fixed points of the other cycles. Hence, we can write

$$
\begin{aligned}
\psi_{1} \cdots \psi_{m} x & =\psi_{1} \cdots \psi_{m-1} x, \quad \text { since } x \text { is a fixed point of } \psi_{m}, \\
& =\psi_{1} \cdots \psi_{m-2} x, \quad \text { since } x \text { is a fixed point of } \psi_{m-1}, \\
& =\vdots \\
& =\psi_{1} \cdots \psi_{i-1} \psi_{i} x \\
& =\psi_{1} \cdots \psi_{i-2} \psi_{i} x, \quad \text { since } \psi_{i} x \text { is a fixed point of } \psi_{i-1}, \\
& =\psi_{1} \cdots \psi_{i-3} \psi_{i} x, \quad \text { since } \psi_{i} x \text { is a fixed point of } \psi_{i-2}, \\
& =\vdots \\
& =\psi_{1} \psi_{i} x \\
& =\psi_{i} x .
\end{aligned}
$$

We can similarly argue that $\psi_{m} \cdots \psi_{1} x=\psi_{i} x$. In fact, applying the cycles in any order to $x \in \operatorname{supp} \psi_{i}$ always results in $\psi_{i} x$.

Now suppose x does not belong to the support of any ψ_{i}. Then x is a fixed point of every ψ_{i} and we can write $\psi_{1} \cdots \psi_{m} x=\psi_{1} \cdots \psi_{m-1} x=\cdots=\psi_{1} x=x$. Again, we can apply the cycles in any order; e.g., $\psi_{m} \cdots \psi_{1} x=x$.

Proposition 3 is important, because we will see later that every permutation can be decomposed into a composition of cycles with pairwise disjoint supports.

2.1. Transpositions

A transposition is a 2 -cycle such as (x, y), where $x \neq y$. Thus, $(x, y) x=y$ and $(x, y) y=x$, while for all $z \neq x, y$, we have $(x, y) z=z$. As mentioned in the Remarks above, a transposition is its own inverse, and $(x, y)=(y, x)$.

Lemma 4. Let ψ be a k-cycle, and let τ be a transposition whose support is a subset of the support of ψ. Then $\psi \tau$ is equal to the composition of two cycles with disjoint supports.

Proof. Suppose $\psi=\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{k}\right)$ and $\tau=\left(x_{i}, x_{j}\right)$. It is easy to check that

$$
\psi \tau=\left(x_{1}, \ldots, x_{i}, x_{j+1}, \ldots, x_{k}\right)\left(x_{i+1}, \ldots, x_{j}\right)
$$

which is the composition of two cycles with disjoint supports.

Lemma 5. Let ψ and η be cycles with disjoint supports, and let τ be a transposition whose support intersects the supports of both ψ and η. Then $\psi \eta \tau$ is a single cycle whose support is supp $\psi \cup \operatorname{supp} \eta$.

Proof. Suppose $\psi=\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right), \eta=\left(y_{1}, \ldots, y_{j}, \ldots, y_{m}\right)$, and $\tau=\left(x_{i}, y_{j}\right)$. It is easy to check that

$$
\psi \eta \tau=\left(x_{1}, \ldots, x_{i}, y_{j+1}, \ldots, y_{m}, y_{1}, \ldots, y_{j}, x_{i+1}, \ldots, x_{k}\right)
$$

which is a single cycle whose support is $\operatorname{supp} \psi \cup \operatorname{supp} \eta$.

3. Orbits

Let φ be a permutation on $\{1, \ldots, n\}$. Given $x \in\{1, \ldots, n\}$, consider the sequence $x, \varphi x, \varphi^{2} x, \ldots, \varphi^{n} x$. These $n+1$ values all belong to $\{1, \ldots, n\}$. So there must be at least two values that are the same, say $\varphi^{k} x=\varphi^{m} x$ for some $0 \leq k<m \leq n$. Now apply φ^{-1} to both sides k times to get $x=\varphi^{m-k} x$. Hence, for any x, there is a smallest positive integer ℓ (depending on x) for which $\varphi^{\ell} x=x$. The orbit of x (under $\varphi)$ is the set $O_{x}:=\left\{x, \varphi x, \ldots, \varphi^{\ell-1} x\right\}$. If $\ell=1$, the orbit is just the singleton set $\{x\}$. A singleton orbit is a fixed point.

Example 6. Consider the permutation φ of Example 1. We see that $O_{1}=\{1,4\}$ and $O_{2}=\{2,3,5\}$. However, $O_{3}=O_{2}, O_{4}=O_{1}$, and $O_{5}=O_{2}$. The orbits of the permutation ψ of Example 1 are $O_{1}=\{1,4\}, O_{2}=\{2,5\}$, and $O_{3}=\{3\}$, while $O_{4}=O_{1}$ and $O_{5}=O_{2}$.

For each $x \in\{1, \ldots, n\}$ we can determine its orbit O_{x}, and since each x belongs to its own orbit; i.e., $x \in O_{x}$, we can write

$$
\{1, \ldots, n\}=\bigcup_{x=1}^{n} O_{x} .
$$

Consider two orbits O_{y} and O_{z} for $y \neq z$. We show below that if they are not disjoint, then they are the same. If $O_{y}=O_{z}$, then the above union can be simplified to

$$
\{1, \ldots, n\}=\bigcup_{\substack{x=1 \\ x \neq z}}^{n} O_{x}
$$

Proceeding in this way, after a finite number of steps, we obtain a sequence of distinct points $y_{1}, \ldots, y_{n^{*}}$ with

$$
\begin{equation*}
\{1, \ldots, n\}=\bigcup_{i=1}^{n^{*}} O_{y_{i}} \tag{3}
\end{equation*}
$$

where $n^{*} \leq n$ and the orbits $O_{y_{1}}, \ldots, O_{y_{n^{*}}}$ are pairwise disjoint. If $n-n^{*}$ is even, we say that the permutation φ is even, and we write $\operatorname{sgn} \varphi=1$. If $n-n^{*}$ is odd, we say that the permutation φ is odd, and we write $\operatorname{sgn} \varphi=-1$. The quantity $\operatorname{sgn} \varphi$ is called the sign, signature, or parity of the permutation φ.

Example 7. Consider the identity permutation, which we denote by \mathscr{I}. For each $x, \mathscr{I} x=x$, and so the orbit of x under \mathscr{I} is $\{x\}$. Hence, the number of disjoint orbits of \mathscr{I} is $n^{*}=n$. Since $n-n^{*}=0$ is even, the identity is an even permutation, and $\operatorname{sgn} \mathscr{I}=1$.

Example 8. Let us determine the disjoint orbits of a k-cycle $\varphi=\left(x_{1}, \ldots, x_{k}\right)$. If we start with x_{1} and apply φ over and over using 11 , we find that $O_{x_{1}}=\left\{x_{1}, \ldots, x_{k}\right\}=$ $\operatorname{supp} \varphi$. If fact, starting with x_{2} or x_{3}, \ldots, or x_{k}, we find they all have the same orbit, $\operatorname{supp} \varphi$. On the other hand if we start with an $x \notin \operatorname{supp} \varphi$, we have by $\sqrt{2}$ that $\varphi x=x$. Hence, the orbit of such an x is the singleton set $\{x\}$. We have thus shown that for a k-cycle, the number of disjoint orbits is $n^{*}=1+(n-k)$. Since this formula is equivalent to $n-n^{*}=k-1$, the sign of a k-cycle is 1 if k is odd and -1 if k is even.

We now show that if two orbits are not disjoint, they are the same. Suppose $O_{y} \cap O_{z} \neq \varnothing$, and let x denote a point in $O_{y} \cap O_{z}$. Since $x \in O_{y}$, we must have $x=\varphi^{r} y$ for some nonnegative integer r. Since $x \in O_{z}$, we must have $x=\varphi^{s} z$ for some nonnegative integer s. Hence, $\varphi^{r} y=\varphi^{s} z$, which implies $y=\varphi^{s-r} z$. This further implies $\varphi^{m} y=\varphi^{m+s-r} z \in O_{z}$ for all m; hence, $O_{y} \subset O_{z}$. Similarly, writing $z=\varphi^{r-s} y$ implies $O_{z} \subset O_{y}$.

4. The Parity Theorem

It is easy to write a k-cycle as a composition of transpositions. Consider the formula

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{3}\right)\left(x_{1}, x_{2}\right) . \tag{4}
\end{equation*}
$$

Notice that each of x_{2}, \ldots, x_{k} appears in only one factor, while x_{1} appears in every factor. If we apply the right-hand side to x_{1}, we get

$$
\begin{aligned}
\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{3}\right)\left(x_{1}, x_{2}\right) x_{1} & =\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{3}\right) x_{2} \\
& =x_{2},
\end{aligned}
$$

since x_{2} is not in the supports of any of the remaining transpositions. If we start with x_{2}, we get

$$
\begin{aligned}
\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{4}\right)\left(x_{1}, x_{3}\right)\left(x_{1}, x_{2}\right) x_{2} & =\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{4}\right)\left(x_{1}, x_{3}\right) x_{1} \\
& =\left(x_{1}, x_{k}\right)\left(x_{1}, x_{k-1}\right) \cdots\left(x_{1}, x_{4}\right) x_{3} \\
& =x_{3}
\end{aligned}
$$

Continuing in this way, we see that (4) holds.
Notice that in (4), there are $k-1$ transpositions. We saw earlier that a k-cycle φ has $n^{*}=1+(n-k)$ orbits so that $k-1=n-n^{*}$ determines the sign of φ. Hence, it is possible to write a k-cycle φ as a composition of transpositions such that the number of transpositions is even if $\operatorname{sgn} \varphi=1$, and the number of transpositions is odd if $\operatorname{sgn} \varphi=-1$. However, there are many ways to write a k-cycle as compositions of different numbers of transpositions.

Example 9. On $\{1,2,3,4,5\}$, we can use (4) to write the 3-cycle $(1,2,3)$ as $(1,2,3)=(1,3)(1,2)$. Since $k=3$ is odd, $k-1=2$ is even. Hence, it is no surprise that we can write a 3 -cycle as the composition of 2 (an even number) transpositions. However, since $(4,5)(4,5)=\mathscr{I}$, we can also write $(1,2,3)=(1,3)(1,2)(4,5)(4,5)$, which is another way to write this 3 cycle as an even number of transpositions.

4.1. Decomposition of Permutations into Cycles with Disjoint Supports

For an arbitrary permutation φ, once we have identified its disjoint orbits we can associate each orbit with a cycle in the following way. The disjoint orbit decomposition (3) suggests that we put

$$
\psi_{i} x:=\left\{\begin{array}{cl}
\varphi x, & x \in O_{y_{i}}, \tag{5}\\
x, & \text { otherwise } .
\end{array}\right.
$$

Note that the ψ_{i} are cycles and have disjoint supports. We can further write

$$
\begin{equation*}
\varphi=\psi_{1} \cdots \psi_{n^{*}} \tag{6}
\end{equation*}
$$

which expresses φ as the composition of n^{*} cycles with disjoint supports. The fact that (6) holds follows from Proposition 3 and the definition (5).

Parity Theorem. Whenever an even (resp. odd) permutation is expressed as a composition of transpositions, the number of transpositions must be even (resp. odd).

Proof. Consider a permutation φ with n^{*} disjoint orbits and corresponding representation as cycles with disjoint supports as in (6). Suppose also that $\varphi=\tau_{1} \cdots \tau_{m}$, where each τ_{i} is a transposition. Recalling that a transposition is its own inverse, write

$$
\mathscr{I}=\varphi \varphi^{-1}=\left(\psi_{1} \cdots \psi_{n^{*}}\right)\left(\tau_{1} \cdots \tau_{m}\right)^{-1}=\left(\psi_{1} \cdots \psi_{n^{*}}\right)\left(\tau_{m} \cdots \tau_{1}\right)=\psi_{1} \cdots \psi_{n^{*}} \tau_{m} \cdots \tau_{1}
$$

Consider the expression $\psi_{1} \cdots \psi_{n^{*}} \tau_{m}$. Since the supports of the ψ_{i} partition $\{1, \ldots, n\}$, the two points in the support of τ_{m} must belong to the supports of the ψ_{i}. If $\tau_{m}=$ (u, v), there are two cases to consider. First, there is the case that u and v both belong to the support of a single ψ_{i}. Second, u belongs to the support of some ψ_{i},
while v belongs to the support of some other ψ_{j} with $j>\left.i\right|^{2}$ In the first case, we use Proposition 3 and Lemma 4 to write

$$
\psi_{1} \cdots \psi_{n^{*}} \tau_{m}=\psi_{1} \cdots \psi_{i-1} \psi_{i+1} \cdots \psi_{n^{*}}\left(\psi_{i} \tau_{m}\right)
$$

where $\psi_{i} \tau_{m}$ is equal to the composition of two cycles with disjoint supports created from $\operatorname{supp} \psi_{i}$. Hence, the above expression is a permutation with $n^{*}+1$ pairwise disjoint orbits. In the second case, we use Proposition 3 and Lemma 5 to write

$$
\psi_{1} \cdots \psi_{n^{*}} \tau_{m}=\psi_{1} \cdots \psi_{i-1} \psi_{i+1} \cdots \psi_{j} \psi_{j+1} \cdots \psi_{n^{*}}\left(\psi_{i} \psi_{j} \tau_{m}\right)
$$

where $\psi_{i} \psi_{j} \tau_{m}$ is equal to a single cycle whose support is the union of the supports of ψ_{i} and ψ_{j}. Hence, the above expression is a permutation with $n^{*}-1$ pairwise disjoint orbits. Since we do not know which of the two cases τ_{m} falls into, let us denote the new number of disjoint orbits by $n^{*}+\sigma_{m}$, where $\sigma_{m}= \pm 1$.

Now that we have determined the number of disjoint orbits of $\psi_{1} \cdots \psi_{n^{*}} \tau_{m}$, we can determine the number of disjoint orbits of $\psi_{1} \cdots \psi_{n^{*}} \tau_{m} \tau_{m-1}$ as $n^{*}+\sigma_{m}+\sigma_{m-1}$, and so on. The number of disjoint orbits of $\mathscr{I}=\psi_{1} \cdots \psi_{n^{*}} \tau_{m} \cdots \tau_{1}$ can be written as

$$
n^{*}+\sum_{k=1}^{m} \sigma_{k}
$$

where each $\sigma_{k}= \pm 1$. The sign of $\mathscr{I}=\psi_{1} \cdots \psi_{n^{*}} \tau_{m} \cdots \tau_{1}$ is determined by whether

$$
n-\left(n^{*}+\sum_{k=1}^{m} \sigma_{k}\right)=\left(n-n^{*}\right)-\sum_{k=1}^{m} \sigma_{k}
$$

is even or odd. However, we know from Example 7 that the identity is even. This means that $\left(n-n^{*}\right)$ minus the above sum has to be even. Therefore, if $\left(n-n^{*}\right)$ is even, the above sum must be even, while if $\left(n-n^{*}\right)$ is odd, the above sum must be odd. Now observe that if m is even, the possible values for the above sum are $m, m-2, \ldots, 4,2,0,-2,-4, \ldots,-m$, which are all even, while if m is odd the possible values are $m, m-2, \ldots, 3,1,-1,-3, \ldots,-m$, which are all odd. Hence, if $\left(n-n^{*}\right)$ is even, i.e., if the original permutation φ is even, then m must be even, while if φ is odd, then m must be odd.

Corollary 10. If φ and ψ are permutations, then $\operatorname{sgn}(\varphi \psi)=\operatorname{sgn}(\varphi) \operatorname{sgn}(\psi)$, and is therefore equal to $\operatorname{sgn}(\psi \varphi)$. In particular, if ψ is itself a transposition (so that $\operatorname{sgn}(\psi)=-1), \operatorname{sgn}(\varphi \psi)=-\operatorname{sgn}(\varphi)$.

[^1]Proof. We only prove $\operatorname{sgn}(\varphi \psi)=\operatorname{sgn}(\varphi) \operatorname{sgn}(\psi)$ since the other parts of the corollary follow immediately from this. Suppose $\varphi=\tau_{1} \cdots \tau_{m}$ and $\psi=\theta_{1} \cdots \theta_{k}$, where the τ_{i} and θ_{j} are transpositions. By the Parity Theorem, $\operatorname{sgn}(\varphi \psi)= \pm$ according to whether $m+k$ is even or odd. Similarly for $\operatorname{sgn}(\varphi)$ and m and $\operatorname{sgn}(\psi)$ and k. It is easy to verify $\operatorname{sgn}(\varphi \psi)=\operatorname{sgn}(\varphi) \operatorname{sgn}(\psi)$ for each of the four possibilities of m and k being even/odd.

5. Determinants

If A is an $n \times n$ matrix with columns $a(1), \ldots, a(n)$, then the i th row of the column vector $a(j)$, denoted by $a_{i}(j)$, is the i, j entry of A. The determinant of A is

$$
\begin{equation*}
\operatorname{det} A:=\sum_{\varphi} \operatorname{sgn}(\varphi) a_{1}(\varphi 1) \cdots a_{n}(\varphi n), \tag{7}
\end{equation*}
$$

where the sum is over all possible $n!$ permutations φ of the n integers $\{1, \ldots, n\}$.

5.1. Simple Properties

If every entry in A is multiplied by a constant c, then every term in 7 will have a factor of c^{n}. Thus, $\operatorname{det}(c A)=c^{n} \operatorname{det} A$. In particular, $\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$.

We show that the determinant of a diagonal matrix is the product of its diagonal entries. To be precise, a matrix A is diagonal if $a_{i}(j)=0$ whenever $j \neq i$. Consider a typical term in (7). If $\varphi \neq \mathscr{I}$, then for some $i, \varphi i \neq i$, and so the factor $a_{i}(\varphi i)=0$ when A is diagonal. Hence, the only term in (7) that is not zero is the term with $\varphi=\mathscr{I}$, and that term is equal to $a_{1}(1) \cdots a_{n}(n)$ since $\operatorname{sgn}(\mathscr{I})=1$.

More generally, we have the same result for triangular matrices.
Proposition 11. The determinant of a triangular matrix is the product of its diagonal entries.

Proof. To begin, recall that A is upper (resp. lower) triangular if the elements below (resp. above) the main diagonal are zero. Without loss of generality, assume A is upper triangular so that $a_{i}(j)=0$ for $i>j$. The result will follow if we can show that all terms in (7) with $\varphi \neq \mathscr{I}$ have zero as a factor. If $\varphi \neq \mathscr{I}$, then for some i, we must have $i>\varphi i{ }^{3}$ and for such i, since A is upper triangular, $a_{i}(\varphi i)=0$.

Recall that the transpose of A, denoted by A^{\top}, is defined by $a_{i}^{\top}(j):=a_{j}(i)$. Thus,

$$
\operatorname{det}\left(A^{\top}\right)=\sum_{\varphi} \operatorname{sgn}(\varphi) a_{\varphi 1}(1) \cdots a_{\varphi n}(n),
$$

[^2]Proposition 12. The determinant of a matrix is equal to the determinant of its transpose.

Proof. First write

$$
\operatorname{det} A=\sum_{\varphi} \operatorname{sgn}(\varphi) \prod_{i=1}^{n} a_{i}(\varphi i)
$$

and make the change of variable $i=\varphi^{-1} j$ to get

$$
\operatorname{det} A=\sum_{\varphi} \operatorname{sgn}(\varphi) \prod_{j=1}^{n} a_{\varphi^{-1} j}(j)
$$

Now replace φ by ψ^{-1} and note the $\operatorname{sgn}\left(\psi^{-1}\right)=\operatorname{sgn}(\psi)$. Thus,

$$
\operatorname{det} A=\sum_{\psi} \operatorname{sgn}(\psi) \prod_{j=1}^{n} a_{\psi j}(j)=\sum_{\psi} \operatorname{sgn}(\psi) a_{\psi 1}(1) \cdots a_{\psi n}(n)
$$

5.2. Determinant of a Product

Fix a particular column index u, and consider a typical term in (7). This term contains the factor $a_{i}(u)$ for some $i \bigsqcup_{\square}^{4}$ and no other factor in that term involves an entry from the column $a(u)$. Hence, when all the columns of A are fixed except for column $u, \operatorname{det} A$ is linear in column u.

Let u and v be two distinct integers from $\{1, \ldots, n\}$, and let $\tau:=(u, v)$ be the transposition that interchanges u and v. Let B denote the matrix with columns $b(j):=$ $a(\tau j)$. Then

$$
b(j):=a(\tau j)= \begin{cases}a(j), & j \notin\{u, v\} \\ a(v), & j=u \\ a(u), & j=v\end{cases}
$$

In other words, B is obtained from A by interchanging columns u and v. We claim that $\operatorname{det} B=-\operatorname{det} A$. To see this, write

$$
\begin{aligned}
\operatorname{det} B & =\sum_{\varphi} \operatorname{sgn}(\varphi) b_{1}(\varphi 1) \cdots b_{n}(\varphi n) \\
& =\sum_{\varphi} \operatorname{sgn}(\varphi) a_{1}(\tau \varphi 1) \cdots a_{n}(\tau \varphi n) \\
& =\sum_{\psi} \operatorname{sgn}\left(\tau^{-1} \psi\right) a_{1}\left(\tau \tau^{-1} \psi\right) \cdots a_{n}\left(\tau \tau^{-1} \psi\right) \\
& =\sum_{\psi} \operatorname{sgn}\left(\tau^{-1} \psi\right) a_{1}(\psi) \cdots a_{n}(\psi)
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& =\operatorname{sgn}\left(\tau^{-1}\right) \sum_{\psi} \operatorname{sgn}(\psi) a_{1}(\psi) \cdots a_{n}(\psi) \\
& =-\sum_{\psi} \operatorname{sgn}(\psi) a_{1}(\psi) \cdots a_{n}(\psi) \\
& =-\operatorname{det} A
\end{aligned}
$$
\]

where the third equality follows by substituting $\varphi=\tau^{-1} \psi$; the fifth equality follows because the sign of a composition of permutations is the product of their signs by Corollary 10, and the sixth equality follows because transpositions are odd.

Now suppose A has two equal columns, and B is obtained by interchanging those two columns. Then by the preceding paragraph, $\operatorname{det} B=-\operatorname{det} A$. But since $B=A$, $\operatorname{det} B=\operatorname{det} A$. Therefore, $\operatorname{det} A=0$.

We showed above that if $b(j)=a(\tau j)$ for some transposition τ, then $\operatorname{det} B=$ $-\operatorname{det} A$. What if $b(j)=a(\varphi j)$ for some arbitrary permutation φ ? Writing φ in terms of transpositions, say $\varphi=\tau_{1} \cdots \tau_{k}$, we see that $\operatorname{det} B=(-1)^{k} \operatorname{det} A=\operatorname{sgn}(\varphi) \operatorname{det} A$.

Theorem 13. $\operatorname{det} B A=\operatorname{det} B \operatorname{det} A$.
Proof. It is convenient to write $\operatorname{det} A$ in terms of its columns. We use the notation $\Delta(a(1), \ldots, a(n))=\operatorname{det} A$. If B is another matrix with columns $b(1), \ldots, b(n)$, then the columns of $B A$ are $B a(1), \ldots, B a(n)$, and

$$
\operatorname{det} B A=\Delta(B a(1), \ldots, B a(n))
$$

Now recall that

$$
a(j)=\sum_{i=1}^{n} a_{i}(j) e(i), \quad j=1, \ldots, n .
$$

Write

$$
\begin{aligned}
\operatorname{det} B A & =\Delta\left(\left[B \sum_{i=1}^{n} a_{i}(1) e(i)\right], B a(2), \ldots, B a(n)\right) \\
& =\sum_{i=1}^{n} a_{i}(1) \Delta(B e(i), B a(2), \ldots, B a(n)) .
\end{aligned}
$$

Repeating this calculation for $a(2), \ldots, a(n)$ yields

$$
\begin{aligned}
\operatorname{det} B A & =\sum_{i_{1}=1}^{n} \cdots \sum_{i_{n}=1}^{n} a_{i_{1}}(1) \cdots a_{i_{n}}(n) \Delta\left(\operatorname{Be}\left(i_{1}\right), \ldots, B e\left(i_{n}\right)\right) \\
& =\sum_{i_{1}=1}^{n} \cdots \sum_{i_{n}=1}^{n} a_{i_{1}}(1) \cdots a_{i_{n}}(n) \Delta\left(b\left(i_{1}\right), \ldots, b\left(i_{n}\right)\right) .
\end{aligned}
$$

Among the n-tuples $\left(i_{1}, \ldots, i_{n}\right)$, if the i_{k} are not distinct, then $\Delta\left(b\left(i_{1}\right), \ldots, b\left(i_{n}\right)\right)$ is the determinant of a matrix with two or more equal columns and is therefore zero. Otherwise, $\left(i_{1}, \ldots, i_{n}\right)=(\varphi 1, \ldots, \varphi n)$ for some permutation φ. Hence,

$$
\begin{aligned}
\operatorname{det} B A & =\sum_{\varphi} a_{\varphi 1}(1) \cdots a_{\varphi n}(n) \Delta(b(\varphi 1), \ldots, b(\varphi n)) \\
& =\sum_{\varphi} a_{\varphi 1}(1) \cdots a_{\varphi n}(n) \operatorname{sgn}(\varphi) \operatorname{det} B \\
& =\operatorname{det} B \sum_{\varphi} \operatorname{sgn}(\varphi) a_{1}\left(\varphi^{-1} 1\right) \cdots a_{n}\left(\varphi^{-1} n\right) \\
& =\operatorname{det} B \sum_{\psi} \operatorname{sgn}\left(\psi^{-1}\right) a_{1}(\psi 1) \cdots a_{n}(\psi n) \\
& =\operatorname{det} B \sum_{\psi} \operatorname{sgn}(\psi) a_{1}(\psi 1) \cdots a_{n}(\psi n) \\
& =\operatorname{det} B \operatorname{det} A .
\end{aligned}
$$

Corollary 14. $\operatorname{det} A=0$ if and only if A is nonsingular.
Proof. If A is nonsingular, then $1=\operatorname{det} \mathbf{I}=\operatorname{det}\left(A^{-1} A\right)=\left(\operatorname{det} A^{-1}\right)(\operatorname{det} A)$ implies $\operatorname{det} A \neq 0$.

Now suppose A is singular. Then the columns of A are linearly dependent. Without loss of generality, suppose $a(n)+\sum_{j=1}^{n-1} c_{j} a(j)=0$ for some coefficients c_{j}. Hence,

$$
\begin{aligned}
0 & =\Delta(a(1), \ldots, a(n-1), 0) \\
& =\Delta\left(a(1), \ldots, a(n-1), a(n)+\sum_{j=1}^{n-1} c_{j} a(j)\right) \\
& =\Delta(a(1), \ldots, a(n-1), a(n))+\sum_{j=1}^{n-1} c_{j} \Delta(a(1), \ldots, a(n-1), a(j)) \\
& =\operatorname{det} A+0
\end{aligned}
$$

since in the sum over j, the j th term involves the determinant of a matrix whose column j and column n are the same. Such a determinant is zero.

5.3. Characteristic Polynomial

The characteristic polynomial of a matrix A is

$$
\xi(\lambda):=\operatorname{det}(\lambda \mathbf{I}-A)
$$

where I denotes the identity matrix; that is the diagonal matrix with ones along the diagonal. If we put $M:=\lambda \mathbf{I}-A$, then $M_{i}(i)=\lambda-a_{i}(i)$, while for $j \neq i$, we have $M_{i}(j)=-a_{i}(j)$. Thus, the term in (7) with $\varphi=\mathscr{I}$ is

$$
\begin{equation*}
\left(\lambda-a_{1}(1)\right) \cdots\left(\lambda-a_{n}(n)\right), \tag{8}
\end{equation*}
$$

which is a polynomial in λ of degree n. We show below that for all other φ, the corresponding term in $\sqrt{77}$ is a polynomial of degree at most $n-2$. Hence, the coefficient of λ^{n-1} in the polynomial $\xi(\lambda)$ is the coefficient of λ^{n-1} in 8 . The coefficient of λ^{n-1} in (8) is seen to be $-\left(a_{1}(1)+\cdots+a_{n}(n)\right)$. The sum of the diagonal elements of a matrix is called the trace, and is denote by

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} a_{i}(i)
$$

Thus,

$$
\operatorname{det}(\lambda \mathbf{I}-A)=\lambda^{n}-\operatorname{tr}(A) \lambda^{n-1}+\cdots+(-1)^{n} \operatorname{det} A,
$$

where the formula for the last term follows by observing that $\xi(0)=\operatorname{det}(-A)=$ $(-1)^{n} \operatorname{det} A$.

For all the $\varphi \neq \mathscr{I}$ in [7], there is some i with $\varphi i \neq i$; but since φ is onto, there must be some $j \neq i$ with $\varphi j=i$. In other words, such terms in (7) must include at least two factors off the diagonal and result in a polynomial of degree at most $n-2$.

5.3.1. Differentiation of the Determinant

Since

$$
\operatorname{det}(\mathbf{I}-t A)=t^{n} \xi(1 / t)=1-\operatorname{tr}(A) t+\cdots+(-t)^{n} \operatorname{det} A,
$$

we see that

$$
p_{A}(t):=\operatorname{det}(\mathbf{I}+t A)=1+t \operatorname{tr}(A)+\cdots+t^{n} \operatorname{det} A
$$

It follows that

$$
\lim _{t \rightarrow 0} \frac{p_{A}(t)-p_{A}(0)}{t}=\operatorname{tr}(A)
$$

For convenience of notation, put $f(B):=\operatorname{det} B$. If B is invertible, then

$$
f(B+t A)=\operatorname{det}(B+t A)=\operatorname{det}(B) \operatorname{det}\left(\mathbf{I}+t B^{-1} A\right)=\operatorname{det}(B) p_{B^{-1} A}(t)
$$

The directional derivative, or Gâteaux derivative, of f at B in the direction A is

$$
(D f)(B, A):=\lim _{t \rightarrow 0} \frac{f(B+t A)-f(B)}{t}=\operatorname{det}(B) \operatorname{tr}\left(B^{-1} A\right)
$$

With a bit more work, we can show that the Fréchet derivative of f at B applied to A is equal to $\operatorname{det}(B) \operatorname{tr}\left(B^{-1} A\right)$. To prove this, it again suffices to treat the case $B=\mathbf{I}$. We must show that given $\varepsilon>0$, for sufficiently small $\|A\|$, we have

$$
\begin{equation*}
|f(\mathbf{I}+A)-f(\mathbf{I})-\operatorname{tr}(A)| \leq \varepsilon\|A\| \tag{9}
\end{equation*}
$$

Without loss of generality, we use the infinity norm on A; i.e., $\|A\|=\max _{i, j}\left|A_{i j}\right|$. Since

$$
\begin{aligned}
f(\mathbf{I}+A) & =\left(1+A_{1,1}\right) \cdots\left(1+A_{n, n}\right)+\sum_{\sigma \neq \mathscr{I}} \operatorname{sgn}(\sigma)(\mathbf{I}+A)_{1}(\sigma 1) \cdots(\mathbf{I}+A)_{n}(\sigma n) \\
& =1+\operatorname{tr}(A)+\text { other terms },
\end{aligned}
$$

where every term in "other terms" includes at least two factors of the form $A_{i j}$ with $i \neq j$. Hence,

$$
\begin{aligned}
|f(\mathbf{I}+A)-f(\mathbf{I})-\operatorname{tr}(A)| & \leq K_{2}\|A\|^{2}+\cdots+K_{n}\|A\|^{n}+\sum_{\sigma \neq \mathscr{I}}(1+\|A\|)^{n-2}\|A\|^{2} \\
& =\left[K_{2}\|A\|+\cdots+K_{n}\|A\|^{n-1}+\sum_{\sigma \neq \mathscr{I}}(1+\|A\|)^{n-2}\|A\|\right]\|A\| .
\end{aligned}
$$

For sufficiently small $\|A\|$, the sum in brackets is less than ε, and so 9 follows.

References

[1] T. L. Barlow, "An historical note on the parity of permutations," The American Mathematical Monthly, vol. 79, no. 7, pp. 766-769, 1972.
[2] W. Phillips, "On the definition of even and odd permutations," The American Mathematical Monthly, vol. 74, no. 10, pp. 1249-1251, 1967.
[3] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.

Index

```
characteristic polynomial,12
cycle,3
derivative
    directional,13
    Fréchet,14
    Gâteaux,13
determinant,9
diagonal matrix,9
directional derivative,13
```

even permutation, 6
fixed points, 3
Fréchet derivative, 14
Gâteaux derivative, 13
identity permutation, 36
k-cycle, 3
odd permutation, 6
one-to-one, 2
onto, 2
orbit, 5
parity, 6
permutation, 2
even, 6
odd, 6
sign, 6
signature, 6
support, 3
trace, 13
transpose, 9
transposition, 4
triangular matrix, 9

[^0]: ${ }^{1}$ To say that a function is invertible means that it is both one-to-one and onto. One-to-one means that no pair of points can map to a common destination point. Onto means that every point is the image of some point.

[^1]: ${ }^{2}$ There is no loss of generality in assuming $j>i$ because (u, v) is equal to (v, u).

[^2]: ${ }^{3}$ To see this, consider the decomposition 6. If $\varphi \neq \mathscr{I}$, some ψ_{i} must be a k-cycle with $k \geq 2$, say $\psi_{i}=\left(x_{1}, \ldots, x_{k}\right)$. These x_{j} are all distinct, and one is the largest, say x_{l}. Then $\varphi x_{l}=\psi_{i} x_{l}<x_{l}$.

[^3]: ${ }^{4}$ The value of i is $\varphi^{-1} u$.

